Hedges in conference interpreting
The role of gender

Cédric Magnifico and Bart Defrancq
Ghent University

This paper, part of a project on gender differences in simultaneous interpreting, analyzes possible gender-related trends in the use of hedges by professional interpreters and examines two hypotheses: (1) simultaneous interpretations, because of processing constraints, contain fewer hedges than the original speeches; (2) consistent with gender differences in spontaneous speech, women interpreters use more hedges than men. The research draws on Ghent University’s EPICG corpus of speeches at the European Parliament and their interpretations. Here, French speeches recorded in 2008 were compared with their English and Dutch interpretations in respect of hedging frequency. Statistical comparison was based on the chi-squared test. With regard to the first hypothesis, comparison of normalized frequencies (occurrences per 1000 words) shows that the interpreters in both language combinations used significantly more hedges than the speakers. The second hypothesis was tested by comparing data according to interpreters’ gender, factoring in the frequency of hedges in the source texts: women interpreters hedged more than men in both target languages, significantly so in Dutch. Regarding strategies that might account for the interpreters’ use of hedges (omission, translation, addition), the women interpreters made more additions than the men. Possible reasons for these patterns are discussed.

Keywords: simultaneous conference interpreting, gender, hedges, corpus-based studies

1. Introduction

As part of a broader research project on gender differences in simultaneous interpreting, this paper focuses on possible gender-related trends in the use of hedges by professional interpreters.
The study of hedges to examine potential gender differences in the interpreting process is particularly pertinent in several respects: from the sociolinguistic literature, we know that women and men have different hedging strategies in spontaneous spoken language (Beeching 2002; Hartman 1976; Holmes 1990, 1995; Lakoff 1975; Östman 1981; Swacker 1979). It has been claimed that these differences originate from the different social roles men and women are brought up with and are expected to continue to comply with. It is therefore relevant to study the use of hedges by men and women in extreme speech conditions, such as simultaneous conference interpreting, where speech is produced in a context in which the social role associated with the interpreter’s gender is likely to be less prominent due to the cognitive demands of interpreting. From the perspective of interpreting studies, the study of hedges used by interpreters is interesting, as hedging is an interpersonal strategy that can change relationship building between the actors involved and influence the outcome of an interpreter-mediated interaction (Altman 1994; Berk-Seligson 1990; Hale 2004; Mason 2008). So far, the effects of hedging have mainly been studied in dialogue interpreting and much less in simultaneous conference interpreting. The question is thus whether interpersonal aims influence simultaneous interpreters’ work in the same way as that of dialogue interpreters. The working conditions in simultaneous conference interpreting differ substantially from those of face-to-face dialogue interpreting, as the simultaneous interpreter is physically isolated from the primary speakers and is therefore probably less likely to indulge in activities, such as hedging, that could be prompted by interpersonal concerns arising from the physical proximity between the interpreter and the primary speakers. However, Monacelli (2009) does notice, on the basis of a small data set, that simultaneous interpreters use hedging strategies similar to those observed in dialogue interpreting. Finally, research in dialogue interpreting has also shown that male and female interpreters deal differently with interpersonal concerns (Mason 2008). The question therefore arises whether the same differences can be observed in simultaneous conference interpreting. If so, this would have important implications, suggesting that women and men might differ in the nuances they give to the interpersonal dynamics of spoken communication when interpreting simultaneously.

1.1 Gender differences in hedging

Gender differences in language use are by no means limited to the area of hedging. There is a considerable amount of literature on other linguistic items, most prominently pronouns, whose use differs according to gender (Argamon et al. 2003). The traditional starting point for comparisons of hedging behaviour by women and men is Lakoff’s (1975) seminal work *Language and Woman’s Place*. Lakoff
Hedges in conference interpreting

(1975: 4–5) states that there is a language typical of women which stems from the socializing process they are brought up in. This language is more polite than that of men and contains specific features such as ‘empty’ adjectives, question intonation (also called question tags), use of hedges, the intensifying adverb ‘so’, hypercorrect grammar, superpolite forms, absence of jokes, and so-called speaking in italics – i.e., women’s uncertainty leads them to strengthen their statement (‘double force’) so as to make sure that they are understood (1975: 53–56). With regard to hedging, Lakoff makes two important claims: (1) women hedge more than men do, as they more often use items such as you know, well, kinda; and (2) hedges “convey the sense that the speaker is uncertain about what he (or she) is saying” (1975: 53). Lakoff’s work has led to extensive research, especially in the field of hedges.

In the light of the data collected by many scholars, both before and after the publication of her work, Lakoff’s first claim appears to be controversial, at the least. Focusing on a different collection of items (maybe, probably, I think and I guess), Hirschman (1973), for instance, had not found any relevant gender differences. In a later and more comprehensive study (Hirschman 1974), he even found that men use I think twice as often as women. Hartman (1976), who studies the speech of 70-year-old Maine natives, finds that female speech is clearly more tentative than men’s and features more items such as perhaps, I suppose, I just feel, probably, and as I interpret it. In a study on “first person references in pre-statement clauses” (It seems to me that, I wonder if), Swacker (1979, in Philips 1980: 534) notices that women use these items more than men. In his review, Philips (1980: 534) classifies these items as hedges. Looking into the use of you know, Östman (1981) finds confirmation of Lakoff’s claim that women use it more often than men. Holmes (1990), on the other hand, notices that sort of and I think are more often used in women’s speech but that you know is more frequent in men’s. Erman (1992) finds items such as you know, you see and I mean to be more frequent in men’s speech. The more recent literature (Beeching 2002; Coates 1993, 1996, 1997; Dixon & Foster 1997; Meyerhoff 1992; Poos & Simpson 2002; Schleef 2004) completely abandons the dichotomy between women’s and men’s usages and underlines the importance of a multifactorial analysis, taking into consideration differences between individual items used as hedges and the contexts in which data on their occurrence are collected. Meyerhoff (1992) focuses on the use of post-noun hedges in the Wellington social dialect, where she finds that these items are salient in same-sex female interactions. Coates (1993; 1996) observes that women hedge more than men, but argues that hedges are multifunctional and that their use depends on the context. In the same vein, Dixon and Foster (1997) analyze the use of sort of and you know in a sample of South African students and find that the context supercedes gender in determining the use of hedges. In a study on four French particles (c’est-à-dire, enfin, hein and quoi), Beeching (2002) comes to the conclusion that
women do not ‘outhedge’ men overall, although some particles seem to be gender-related. Drawing on the Michigan Corpus of Academic Spoken English, Poos and Simpson (2002) study the relationship between gender and hedging in academic discourse, focusing on sort of and kind of, and conclude that the use of hedges correlates more with the academic disciplinary context than with the speaker’s gender. Likewise, Schleef (2004) examines the gender-related distribution of you know, like, okay, and right in academic discourse, and finds that gender is the factor having the least impact on the use of these hedges.

The studies presented so far yield conflicting results relating to men and women’s hedging strategies. Five scholars (Coates 1993, 1996; Hartman 1976; Lakoff 1975; Östman 1981; Swacker 1979) do find evidence that women hedge more than men; only one scholar, Erman (1992), claims the opposite – i.e., that men hedge more than women. Other, more recent studies either do not find any gender differences or conclude that gender asymmetry depends on the item under study (Holmes 1990; Beeching 2002). However, it should be pointed out that two recent studies identifying no gender differences in hedging are conducted in contexts which are very different from the original spontaneous spoken interaction where Lakoff first noticed these gender-related patterns: Poos and Simpson (2002) focus on the Michigan corpus of academic spoken English, and Schleef (2004) studies English academic discourse. As a result, we can conclude that there is still enough evidence to suggest more frequent hedging by women than men, at least in spontaneous spoken language.

Lakoff’s second claim – i.e., that hedges originate from a feeling of uncertainty – was also criticized. Several authors adduce that hedges are in fact multifunctional. Coates (1996), for instance, argues that:

[r]ecognizing that women use hedges more than men does not entail recognizing that women are unassertive. […] On the contrary, women’s ability to exploit the multifunctional potential of hedges is a strength, not a weakness, and arises from women’s sensibility to interpersonal aspects of talk.

In the recent literature, hedges are mostly analyzed as geared towards implementing tentativeness and mitigating the force of a statement (Beeching 2002; Brinton 1996; Brown & Levinson 1987; Coates 1993, 1996; Vismans 1994). More emphasis is placed on the functional variation of individual items.

Although the bulk of the literature on gender differences in hedging focuses on English, similar findings have been reported for other languages. In a study of French, for instance, Beeching (2002) investigates the use of particles in relation to gender and selects four pragmatic particles whose functions include hedging: c’est-à-dire, enfin, hein and quoi. She identifies the functions of the different items and notes that women overall do not use more hedges than men. However, certain
particles do seem to be gender-asymmetrical: *enfin* is used by men to “introduce corrections to the referential content of the preceding stretch of speech, whilst women use it to a greater extent […] to structure the discourse” (2002: 209). As for *hein*, women tend to use it slightly more to link two consecutive arguments, whereas men favour a hedging use of this marker (2002: 210). In sum, it seems fair to conclude that, even though much more research is needed into the intricacies of hedging by women and men, gender-based differences do exist in the use of particular items.

1.2 Hedges in interpreting

There is evidence in the literature to suggest that pragmatic markers, including those used in hedging strategies, such as *well*, are vulnerable in interpreting – i.e., they are among the first items to be omitted by interpreters. Hale (2004) and Mason (2008) report that interpreters have a tendency to omit pragmatic markers, either because they consider them, in their own words, “superfluous to the message”, or because they are faced with cognitive overload (Mason 2008: 86). According to Mason’s data, men appear to omit more of these markers than women. There is also evidence that interpreters compensate omissions by adding pragmatic markers to the target text (Mason 2008).

Omissions and additions of hedges come at a cost. Altman (1994: 28–30) warns that they are likely to distort the message initially intended by the speaker and, depending on the seriousness of the omission or addition, could even lead to a breakdown in communication. On the pragmatic level, Berk-Seligson shows that the absence or the presence of hedging in a rendition by a courtroom interpreter has a significant impact on the mock jurors, as the addition of hedges produces the impression that the speaker is hesitant and that s/he does not want to tell the truth. A hedged interpretation even leads hearers to be “significantly more negative towards the witness than were those who had heard the interpretation that lacked hedges” (1990: 181). Likewise, Hale (2004: 86) suggests that the incorrect use, or the omission, of a marker can change the implicature of an utterance, altering the way it is perceived by the audience, especially the jury. Furthermore, she argues that, in the context of courtroom questioning, the “omission [of the markers] by the interpreters will alter the illocutionary force or strength with which the question is asked”. Mason (2008: 25) shows that omissions in terms of address change the intended relation between the witness and the attorney. She also finds that, under cognitive load, interpreters add or omit items of politeness (2008: 84–86). These omissions or additions may “alter the jurors’ perception of a witness or of counsel in a positive or detrimental way” (2008: 39). Omissions of politeness markers can make the utterance more face-threatening, while the
addition of markers can reduce the strength of an utterance, functioning thereby as a face-saving mechanism.

The studies by Berk-Seligson (1990), Hale (2004) and Mason (2008) presented here deal with courtroom interpreting. The predominant interpreting mode in this context is short consecutive interpreting. It could, however, be assumed that similar patterns of use are also visible in simultaneous conference interpreting. Diriker (2004) and Monacelli (2009) have convincingly shown that norm compliance in simultaneous interpreting is co-determined by the interpreter’s own pragmatic considerations.

Simultaneous interpreting, however, is probably even more cognitively demanding than short consecutive. Gile (1995) argues that simultaneous interpreters tend always to work close to saturation. As a result, the slightest unexpected difficulty causes errors and omissions. In this process, pragmatic markers such as hedges are among the most vulnerable items, as interpreters are specifically trained to give priority to propositional meaning (Seleskovitch 1975). As hedges are not part of that propositional meaning, they are more likely to be omitted when the going gets tough. It is worth noting that Barik (1971: 202), for instance, in a study on omissions in interpreting, does not consider the omission of what he calls ‘fillers’ devoid of propositional meaning (such as you know), which could be considered as ‘hedges’ by other authors, to be relevant for the purpose of his study. This seems to indicate that, at least in a scholarly perspective on interpreting, the omission of pragmatic markers or hedges is considered accepted practice.

Considering the aforementioned research, the present study examines the following hypotheses:

1. Taking into account that interpreters tend to work close to saturation, sometimes leading to omissions at the slightest difficulty (Gile 1995), and considering that the focus of interpreting is on the propositional meaning (Seleskovitch 1975), hedges are likely to be among the first elements to be omitted when interpreters face a cognitive overload. Interpretations are, therefore, expected to contain fewer hedges than the original speech.

2. As there is evidence in the literature that women hedge more than men in spontaneous language, and considering that the interpreting activity can be seen as a type of language activity (though not so spontaneous), speeches interpreted by female interpreters can be expected to contain more hedges than those interpreted by male interpreters.

As various terms have been used in the introduction to denote the function of ‘hedging’, the following section attempts to define the term ‘hedge’ and illustrates the approach taken in this study. The corpus used to conduct the study is described.
in Section 3, while Section 4 focuses on the methodology. In Section 5, the results of our corpus analysis are presented before being discussed in Section 6. Section 7 outlines the general conclusions and the limitations of the study, and raises a number of points that could be examined in future research.

2. Definition of hedges

For the purpose of this study, it is important to define precisely what we mean by the term 'hedge'. There is considerable terminological confusion in the literature in this field. The lists of hedges one can find in Hirschman (1973), Lakoff (1975), Hartman (1976), Holmes (1990), Erman (1992) and Coates (1993) overlap only partially. For example, ‘you know’ is included in the lists of Lakoff, Holmes, Erman and Coates but not in the other lists. ‘Maybe’ and ‘probably’ can be found in Hirschman and Coates’ lists; Hartman studies ‘perhaps’, which is also included in Coates’ list. In the broader field of pragmatic studies, items called hedges in Lakoff (1975), Holmes (1990) and Coates (1993) often receive other names. Brinton (1996: 29) draws up a list of 29 terms used in the literature to refer to these items. Our purpose is not to discuss the different labels and functions at length, but to find a definition allowing us to identify hedges in source texts and interpretations. We will opt for the concepts originally used by Lakoff (1975), Holmes (1990) and Coates (1993), and consistently use the term ‘hedge’ in this study.

Research on hedges suggests that these items are linked to politeness and, more particularly, to the preservation of face, following the concept developed by Goffman (1967) and adapted by Brown and Levinson (1987). Brown and Levinson (1987: 70) state that face-threatening acts (FTA) – i.e., acts that threaten the face wants of the addressee – can be redressed, among others, by hedges on the illocutionary force of the act. Holmes (1990) analyzes hedges as implementing a positive politeness strategy. Brown and Levinson, however, consider them more typical of negative politeness in that they soften a FTA “by blurring the speaker’s intent” (Brown & Levinson 1987: 116–117). The authors add that “the operation of hedging can be achieved in a number of surface forms” (Brown & Levinson 1987: 146), through particles, intonation, etc.

The hedging function as studied by Lakoff, Holmes and Coates is also found in the definition of other language features, such as pragmatic particles (PPs). Beeching (2002: 2), following Brinton (1996), investigates the pragmatic function of particles “as mechanisms whereby speakers may hedge their speech and thereby render utterances more tentative and less face threatening”. Likewise, these PPs can serve as hedges:
whereby potentially face-threatening acts are mitigated either through repair or pre-emption (to soften a potentially face-threatening act in the performing of it). PPs may be used to introduce repairs of a referential sort or of an interactional, face-saving kind. (Beeching 2002: 61)

Even modal particles (MPs), which most authors distinguish from hedges or pragmatic markers (Aijmer & Simon-Vandenbergen 2006; Degand et al. 2013), have been defined using the same concepts. Studying the use of Dutch MPs in directive speech acts, Vismans (1994: 68) claims that these particles can be used to either mitigate or reinforce directive speech acts and that the function of mitigation – i.e., “the weakening of the force of the speech act” – is “inherent in the MPs use of even, maar, misschien and soms”. It should be noted in this context that there are significant differences between languages with regard to the use of modal particles: German and Dutch, for instance, make extensive use of them and are sometimes referred to as ‘particle languages’.

Although the terms used by various authors apparently differ, the lists of hedges and pragmatic markers overlap. The hedging function as defined by Coates can also be fulfilled by Brinton’s pragmatic marker or Bleeching’s pragmatic particle: depending on the context, each of these items can implement tentativeness and mitigate an utterance. As mentioned at the beginning of this section, we apply the term ‘hedge’ in the meaning originally meant by Lakoff, Holmes and Coates, where gender differences have been noticed. A hedge is therefore considered to be a linguistic item which mitigates an utterance, conveying tentativeness and saving face for the interlocutor or the speaker. For the purposes of our study, it is this function that will determine whether an item in a specific context is a hedge.

The items we identified accordingly, in the corpus data, can be found in Section 4.

3. Data

The corpus data used in this study were drawn from EPICG (European Parliament Interpreting Corpus Ghent), currently being compiled at Ghent University. This corpus is based on plenary sittings held at the European Parliament in April, May and June 2006, as well as in September and October 2008. The sittings are available on the website of the European Parliament in the original language, and interpretations are available in the other official languages of the European Union. To create the corpus, this material is downloaded as video footage and transcribed. In the framework of our research, all transcriptions are made according to the Valibel norms (Bachy et al. 2007). They include a large number of oral features – i.e.,
hesitation markers, false starts, repetitions and so forth. Each transcription displays metadata obtained from the website of the European Parliament, specifying the name of the speaker, the topic and date of the sitting, the duration of the speech and the interpretation, the number of words and, where interpreting team sheets are available for consultation, the interpreter’s gender. The corpus currently comprises 193,000 words, including source speeches in French, Spanish and Dutch together with their interpreted versions in Dutch, English and French.

For our purposes, the 2008 subcorpus has been selected with French as a source language and English and Dutch as target languages. The subcorpus contains 39 speeches in French and 39 interpretations, both in English and in Dutch: 19 speeches interpreted by men and 20 by women for the French/Dutch language pair; 16 speeches interpreted by men and 23 by women for the French/English language pair. For this material, the interpreter’s gender was determined purely on the basis of the vocal features of the interpretation; we do not possess the team sheets of the corresponding sittings, and are thus unable to tell how many different female and male interpreters are involved. Obviously, any one interpreter tends to interpret several speeches during a sitting. Table 1 shows the number of words uttered by the male and female source speakers of French. Table 2 gives an overview of the number of source language words the interpreters were exposed to and the number of target language words they uttered. The data are broken down according to the output language and the interpreter’s gender.

<table>
<thead>
<tr>
<th>Table 1. Number of words uttered by source text speakers</th>
</tr>
</thead>
<tbody>
<tr>
<td>French ST</td>
</tr>
<tr>
<td>Male speakers</td>
</tr>
<tr>
<td>19,281</td>
</tr>
<tr>
<td>Female speakers</td>
</tr>
<tr>
<td>12,192</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Number of words presented to and uttered by male and female interpreters</th>
</tr>
</thead>
<tbody>
<tr>
<td>English booth</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>French source texts</td>
</tr>
<tr>
<td>Male interpreters</td>
</tr>
<tr>
<td>Female Interpreters</td>
</tr>
</tbody>
</table>

The 2008 subcorpus, comprising in total around 117,500 words, enables us to conduct a qualitative and fine-grained analysis of the hedges identified in two Germanic languages. We chose to include two language pairs – French/English and French/Dutch – in order to guard against findings being subject to a possible
language-specific influence in the use of hedges. This selection criterion allows us to examine the behaviour of interpreters, in different languages, under the same circumstances: the same institutional context, the same speakers (who often read their texts very fast) and the same (highly) specialized speeches.

4. Methodology in identifying and classifying hedges

We manually identified all items in both the French source texts and the English and Dutch target texts that meet the definition of a hedge proposed in Section 2. It appears that the hedging mechanisms differ according to the target language. Although the use of epistemic items such as ‘perhaps’ or ‘I think’ is common as a hedging strategy in all three languages concerned here, their frequencies are very different. Dutch even possesses a whole category of language-specific modal particles that can be used for hedging (Niemegeers 2010; Vismans 1994). This is a category that does not exist in English or in French (Aijmer et al. 2006: 103). As this paper seeks to establish possible gender differences in the hedging process and not an exhaustive list of the hedging mechanisms used by interpreters, we decided to take an onomasiological approach: we manually identified all features, except intonation, that met our definition, without following a pre-defined list of hedges compiled on the basis of the literature. In some cases, we encountered items which were described as hedges in the literature but which did not function as such in our corpus. We did not include these items in our study. Example (1) illustrates this:

(1) nous passons / quatre-vingt-dix pour cent / de notre temps / euh à l’ intérieur / euh madame Ferreira me posait la question / euh de savoir s’ i/ s’ i/ s’ il y avait un / euh / un lien par exemple / euh en France au niveau national entre / le Grenelle de l’ environnement / euh et euh ce plan européen / euh et bien dans le Grenelle de l’ environnement nous avons beaucoup travaillé sur les questions de santé environnementale / et et pour y retrouver la même problématique que celles que / euh implicitement vous avez euh / les les uns et les autres exposées […] [EPICG_04_09_2008_évaluationparcoursd’actionpales_european_nathaliekosciuskomorizet_l_fr]

we do spend ninety per cent of our time within buildings and premises the question was raised as to whether there’s a link for example national level / between er environmental pollution and this er er community plan well / we

1. We included English glosses, in single inverted commas, wherever the English interpretation of the French source text is not presented here or significantly deviates from the source text. Wherever English glosses are included for the source text, Dutch interpretations are not glossed.
have worked a lot on environmental quality and we find the same problems in our studies as those which inherently you’ve referred to et the the known pathologies [EPICG_04_09_2008_evaluationàmiparcoursdupland’actioneur opéen_nathaliekosciuskomorizet_I_en]

Et bien, which was presumably translated by means of well in this context, can be used to implement tentativeness in certain contexts. In example (1), however, both the speaker and the interpreter use et bien and well to establish a logical connection between utterances. In this particular context, the focus is on the question of whether there was a link between the “Grenelle de l’environnement” and the “European plan”. In using et bien and well, the speaker and the interpreter reinforce textual cohesion by marking the connection between the question and the answer. Since no examples of et bien as a hedge were found in the corpus, this particular occurrence was not included in the study.

The list of hedges in the French subcorpus includes the following items: peut-être, sans doute, je pense, je crois, par exemple, quelque peu, un peu, plutôt, en quelque sorte, and (il me / nous) semble.

The English hedges are the following: maybe, perhaps, sometimes, I think, I believe, seem/seems, for example, sort of, kind of, you know, I mean, a bit, a little, some, and rather. Well, which is identified as a hedge by Coates (1993, 1996), is not used in its hedging function by the interpreters and was therefore not included in our list of hedges.

In the Dutch target texts, the following items were identified as hedges: misschien, soms, ik denk, ik geloof, ik vind, het schijnt, een beetje, eens, even, maar, toch, and wel.

Unlike the English well, the Dutch wel is used by the interpreters to add tentativeness in the speech in certain contexts. A fine-grained analysis was conducted to distinguish its use as a hedge from its occurrence in other functions, as seen in the following example:

(2) alors dans le rapport de monsieur / Poul Nyroup Rasmussen moi je vous invite / à nous répondre concrètement point par point / car il y a des propositions législatives qui pourraient réhausser le bilan de votre mandat / au terme de cette Commission/ […] [EPICG_22_09_08_hedgefundsprivateequity_pervencheberes_I_fr]

‘now in the report by mister Poul Nyroup Rasmussen I ask you to give concrete answers point by point because there are legislative proposals that could improve the image of your work at the end of this Commission’s term’
In example (2), *wel* used in combination with *eens* mitigates the utterance, introducing the same tentativeness as the French modal verb *pourraient*. Both the speaker and the interpreter state that the suggestions made could be of help to the Commissioner, but without guaranteeing their success. On the other hand, the use of *wel* in example (3) is associated with no hedging:

(3) nous passons / quatre-vingt-dix pour cent / de notre temps / euh à l’intérieur / euh madame Ferreira me posait la question / euh de savoir s’il y avait un / euh / un lien par exemple / euh en France au niveau national entre / le Grenelle de l’environnement / euh et euh ce plan européen / euh *et bien* dans le Grenelle de l’environnement nous avons beaucoup travaillé sur les questions de santé environnementale / […]

[EPICG_04_09_2008_évaluationàmiparcoursdupland’actioneuropéen_nathaliekosciuskomorizet_I_fr]

‘we spend ninety percent of our time inside buildings er Ms Ferreira has asked me if if if there is er a link for instance er in France on the national level between the environmental action plan er and er this European plan er well in the environmental action plan we have worked a lot on environmental health issues’

hoewel wij negentig procent van onze tijd binnenshuis doorbrengen / we hebben het ook gevraagd of / er een band bestaat bijvoorbeeld in Frankrijk op het nationaal niveau / tussen euh / de / hittegolf / en / euh / ja het milieuplan *wel* / in dat euh / hittegolf-actieplan hebben wij inderdaad / ook euh naar het milieu gekeken […]

[EPICG_04_09_2008_évaluationàmiparcoursdupland’actioneuropéen_nathaliekosciuskomorizet_I_nl]

In example (3), *wel* performs the same function as the English *well* in example (1): it reinforces textual cohesion and negotiates the transition between the question and the answer. For that reason, *wel* in example (2) was included in our study and *wel* in example (3) was excluded.

After identifying the hedges in the French source texts and in the English and Dutch target texts, we manually aligned the data and charted the relationships between source and target texts. In a study on hedging by interpreters, it is, of course, vital to know to what kind of hedging the interpreter was exposed in the
first place: interpreters’ hedging will inevitably be co-determined to a considerable extent by that of the speakers. In order to avoid any bias originating from differing exposure to hedges, we analyzed all the aligned units and grouped them into five different categories, based on the relationship between source and target texts. This categorization is necessary, as target texts may differ substantially from source texts because of interpreters’ strategies or errors.

Category 1

The first category (‘equivalents’) comprises cases where equivalent hedges were found in the same context in source and target text. We assume that the hedge was translated in these cases. Examples (4) and (5) illustrate this first category:

(4) et voilà Parme qui nous montre peut-être un chemin possible […]
[EPICG_25_09_08_étatdeslieuxréformeécoleseuropéennes_enrica_herniot_schoepesI_fr]
‘and perhaps Parma shows us the way ahead’
[EPICG_25_09_08_étatdeslieuxréformeécoleseuropéennes_enrica_herniot_schoepesI_en]

(5) même si ça a été un peu difficile dans les négociations avec le Conseil euh d’aboutir […]
[EPICG_20.10.08_Programme Erasmus Mundus_marielledesarnez_fr]

even if it was rather difficult to long negotiations with the Council to get to some success […]
[EPICG_20.10.08_Programme Erasmus Mundus_marielledesarnez_en]

It should be noted that our concept of equivalence is a broad one: hedges are assumed to be translated, even if their hedging potential is sometimes stronger or weaker than that of the items in the target text.

Category 2

The second category comprises cases where a hedge was found in the target text, but not in the source text; it is assumed that any such hedge was added by the interpreter. This ‘no stimulus’ category is illustrated in example (6), where misschien (‘perhaps’) was added by the Dutch interpreter:
(6) tous ces choix / témoignent d’une politique à courte vue / digne / de l’actuelle Maison blanche / mais indigne d’une politique / européenne / de sécurité […]
[EPICG_01.09.08_situation en georgie_franciswurtz_I_fr]

‘all these choices are examples of a short-sighted policy worthy of the current White House but unworthy of a European security policy’

dat is allemaal een beleid op korte een kortzichtig beleid // dat past misschien in het Witte Huis maar dat past niet dat is Europa onwaardig […]
[EPICG_01.09.08_situation en georgie_franciswurtz_I_nl]

Category 3

The third category (‘omissions’) comprises cases where a hedge was used in the source text but not in the target text. It is assumed that the interpreter omitted the hedge in these cases. An omission is illustrated in example (7):

(7) un débat qui s’annonce constructif et sans doute intense […]
[EPICG_01.09.08_évaluation du système de dublin_jacquesbarrot_fr]

‘a debate that will be constructive and probably intense’
I’m sure the debate will be a constructive and an intense one […]
[EPICG_01.09.08_évaluation du système de dublin_jacquesbarrot_en]

The omission of a whole sentence containing a hedge, as illustrated in example (8), is not considered as omission of the hedge:

(8) je pense que peut-être ça vous est arrivé moi ça m’était arrivé lorsque j’étais membre du parlement colombien […]
[EPICG_08.10.08_formalsitting_betancourt_fr]

‘I think this may also have happened to you it happened to me when I was a member of the Parliament of Columbia’

dat is mij ook overkomen toen ik lid was van het Colombiaanse parlement […]
[EPICG_08.10.08_formalsitting_betancourt_nl]

Category 4

The fourth category (‘other source stimulus’) comprises cases where the French stimulus for a Dutch or an English hedge was not intended as a hedge in the source text:
et je me suis rendu compte que madame Gutiérrez / dans son travail que je qualifierais de remarquable / est arrivée à nous faire des propositions acceptables […] [EPICG_04.09.2008_protectiondessols_françoisegrossetête_fr]

‘I realized that Mrs. Gutiérez in her work that I would like to call remarkable has managed to make acceptable proposals’

I think it’s remarkable work she has made some very acceptable proposals […] [EPICG_04.09.2008_protectiondessols_françoisegrossetête_en]

Category 5

The last category (‘other equivalent’) is made up of interpretations where a French hedge is rendered by an English or a Dutch item that does not have a hedging function. What seems to have happened in such cases is that the interpreter has translated the hedge non-semantically, as illustrated by example (10):

(10) je pense que peut-être ça vous est arrivé moi ça m’était arrivé lorsque j’étais membre du parlement colombien […] [EPICG_08.10.08_formalsitting_betancourt_fr]

‘I think this may also have happened to you it happened to me when I was a member of the Parliament of Columbia’

I think and and I’m sure that’s happened to you and it’s happened to me when I was a member of the Colombian parliament […] [EPICG_08.10.08_formalsitting_betancourt_en]

After the classification of the hedges, the concordance software WConcord 3.0 was used to double-check that no element had been overlooked. The hedges were then sub-classified according to the gender of the interpreter.

The analysis of the results is divided into different stages. First, the number of hedges used by men and by women in the source texts is compared on the basis of normalized frequencies (i.e., the number of occurrences per 1000 words). The English and Dutch normalized frequencies of hedges used by men and women are then compared. Finally, the comparative frequency of hedges in the source text and in English and Dutch is analyzed for female and male interpreters. At each stage, a statistical test, the chi squared test, is conducted to determine any statistical significance in the (absence of) differences observed. The differences are considered statistically significant when the \(p \) value does not exceed 0.05.
5. Results

5.1 Overview of results

This section presents the results of the analysis: the hypotheses are tested in relation to the total number of hedges in the 2008 subcorpus examined. A fine-grained analysis is then conducted for each language pair represented.

5.1.1 Hedges used by the source text speakers

Table 3 shows absolute frequency of hedges and their normalized frequency.

<table>
<thead>
<tr>
<th>French</th>
<th>Men</th>
<th>norm. freq. /1000 words</th>
<th>Women</th>
<th>norm. freq. /1000 words</th>
</tr>
</thead>
<tbody>
<tr>
<td>source hedges</td>
<td>41</td>
<td>2.13</td>
<td>26</td>
<td>2.13</td>
</tr>
</tbody>
</table>

Our data do not support claims about gender differences in the use of hedges, at least for the items included in this study: female source text speakers at the European Parliament hedge slightly more than their male counterparts, but this difference is not significant ($\chi^2 = 0.0001; df = 1; p > 0.05$). Of course, speeches at the European Parliament do not reflect everyday conversation: they are prepared in written form and almost invariably read out. Hedging is less likely in such cases, as the interpersonal component of language production is very limited during preparation and even during presentation of the speech.

5.1.2 Hypothesis 1

It is assumed that the interpreters will use fewer hedges than the source text speakers, because of processing capacity constraints. In Table 4, we therefore present the absolute and normalized frequencies of hedges and other stimuli in the French source texts, as well as of target hedges in English and Dutch. Note that the total number of source text hedges has now doubled, as each source hedge is perceived by two different interpreters: one working into English, the other into Dutch.

<table>
<thead>
<tr>
<th># normalized frequency (/1000 words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>source hedges</td>
</tr>
<tr>
<td>source stimuli other than hedges</td>
</tr>
<tr>
<td>target hedges</td>
</tr>
</tbody>
</table>
Surprisingly, the number of hedges produced by the interpreters is significantly higher than the number of hedges they are exposed to ($\chi^2 = 27.55; df = 1; p < 0.0001$). Other stimuli perceived by the interpreters cannot account for the difference: we found only 27 instances where a hedge in the target text could be the (inaccurate) translation of a source text item which is not a hedge itself (category 5 above). Adding these to the source hedges has no effect on statistical significance. It is therefore safe to conclude that the interpreters use a lot more hedges than the speakers. Our first hypothesis is therefore not supported by our findings.

A closer analysis conducted on each language pair reveals that this phenomenon is not language pair-specific. Table 5 again shows the results presented in Table 4, this time zooming in on the language pairs.

Table 5. Frequencies of hedges presented to and uttered by interpreters for each language-pair

<table>
<thead>
<tr>
<th></th>
<th>Subcorpus Fr-En</th>
<th>Subcorpus Fr-Nl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>norm. freq. (/1000 words)</td>
</tr>
<tr>
<td>source hedges</td>
<td>67</td>
<td>2.13</td>
</tr>
<tr>
<td>source stimuli other than hedges</td>
<td>19</td>
<td>0.60</td>
</tr>
<tr>
<td>target hedges</td>
<td>124</td>
<td>4.40</td>
</tr>
</tbody>
</table>

Notes. Here, and in subsequent tables, Fr = French; En = English; Nl = Dutch.

The results in both language pairs seem to be well balanced, with interpreters producing slightly more hedges in English than in Dutch. This difference is, however, not significant ($\chi^2 = 0.12; df = 1; p > 0.05$), implying that the interpreters hedge more than the source text speakers irrespective of the language they are interpreting into. Hypothesis 1 is thus rejected for both language pairs.

5.1.3 Hypothesis 2

Source language hedges and stimuli are first classified according to the gender of the interpreter who was exposed to them. Interpreters who are exposed to more hedges are, of course, likely to produce more hedges, and this effect has to be taken into account when analyzing gender differences. Table 6 gives an overview of the total number of stimuli heard by the interpreters, in both language pairs.
It follows from Table 6 that, in the material analyzed for this study, male interpreters are significantly more exposed to hedges and other potential hedge-inducing source items than female interpreters ($\chi^2 = 22.10; df = 1; p < 0.0001$).

Table 7 presents the total number of hedges produced by the interpreters in English and in Dutch.

In terms of absolute frequencies, women interpreters hedge more than men. However, as men interpret fewer texts than women in the corpus, the comparison must be based on normalized frequencies. These show men to hedge more than women, the difference between the genders being near-significant ($\chi^2 = 3.78; df = 1; p = 0.05$). The raw data, therefore, do not seem to support the second hypothesis.

However, Table 7 does not take into account the number of source language stimuli, which is likely to have a considerable impact on the interpreter's hedging. We therefore need to compare the source text stimuli with the target text hedges, as is done in Table 8.

Table 8 presents the normalized frequencies of Tables 6 and 7. While both male and female interpreters appear to hedge more than the source text speakers, the difference is significant only for female interpreters ($\chi^2 = 29.22; df = 1; p < 0.05$);
for males, it is non-significant ($\chi^2 = 4.45; df = 1; p > 0.05$). This finding seems to bear out the second study hypothesis (see above, 1.2).

However, further analysis is needed to see whether the trends observed are common to both language pairs. As it is clear that source text hedges affected the trends examined above, we included them directly in the comparison by language pair. Table 9 compares, for each language pair, the normalized frequencies of source text stimuli and target language hedges for male and female interpreters.

Table 9. Normalized frequencies of source stimuli and target hedges, by gender and by language pair

<table>
<thead>
<tr>
<th></th>
<th>Fr-En language pair</th>
<th>Fr-Nl language pair</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
<td>Female</td>
</tr>
<tr>
<td>source text stimuli</td>
<td>3.67</td>
<td>1.43</td>
</tr>
<tr>
<td>source stimuli other</td>
<td>1.02</td>
<td>0.42</td>
</tr>
<tr>
<td>than hedges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>target hedges</td>
<td>7.02</td>
<td>3.31</td>
</tr>
</tbody>
</table>

There is a clear language-specific trend: in the French-Dutch language pair, men do not hedge significantly more than the speakers they interpret ($\chi^2 = 0.42; df = 1; p > 0.05$), whereas female interpreters do ($\chi^2 = 22.54; df = 1; p < 0.001$). This corresponds exactly to the general tendency that we discussed previously. The gender difference, however, is absent in the French-English language pair: both male and female interpreters hedge significantly more than the speakers they interpret (for men: $\chi^2 = 4.28; df = 1; p < 0.05$; for women: $\chi^2 = 8.74; df = 1; p < 0.05$). It is not immediately clear what the reasons could be behind this language-related difference.

5.2 Source-target analysis

The data presented in Section 5 allow us to draw some general conclusions about hedging behaviour of the European Parliament male and female interpreters sampled in our corpus. In all, these interpreters definitely hedge more than the source text speakers they hear, which is unexpected; and in at least one language pair, female interpreters ‘outhedge’ their male colleagues. So far, we have presented only raw data: frequencies of hedges used by source text speakers and interpreters, which suggest that the latter (and the female interpreters in particular) use significantly more hedges than the source text speakers. However, the raw data should be handled with care: total numbers of hedges used by interpreters are the result of a complex web of relationships with the source text, including cases where
hedges are omitted by the interpreters. The raw data do not tell us, for instance, whether the higher frequencies of hedges in interpretations by women are related to a higher hedge retention rate, greater numbers of additions, fewer omissions, or a combination of two or more of these factors.

Table 10 gives an overview of the different strategies used by male and female interpreters in relation to the source text stimuli they are exposed to.

Table 10. Strategies used by male and female interpreters when exposed to a hedge

<table>
<thead>
<tr>
<th></th>
<th>total # source stimuli</th>
<th># translated</th>
<th># omitted</th>
<th>% translated</th>
</tr>
</thead>
<tbody>
<tr>
<td>men</td>
<td>92</td>
<td>63</td>
<td>29</td>
<td>68.5</td>
</tr>
<tr>
<td>women</td>
<td>67</td>
<td>48</td>
<td>19</td>
<td>71.6</td>
</tr>
</tbody>
</table>

As Table 10 shows, the percentages of hedges translated and omitted by male and female interpreters differ only slightly: men translate 68.5% of the stimuli they are exposed to, as compared to 71.6% for women. The difference between the two genders is not statistically significant ($\chi^2 = 0.18; df = 1; p > 0.05$). In other words, there are no major differences between male and female interpreters’ strategies in relation to source text stimuli.

Logically, if no differences are observed with regard to source text stimuli, the only explanation for the different overall frequencies of hedges in interpretations by men and women is that the latter make more additions. Table 11 shows that this is indeed the case.

Table 11. Origin of the target text hedges

<table>
<thead>
<tr>
<th></th>
<th>total # target hedges</th>
<th># translated</th>
<th># added</th>
<th>% added of all target hedges</th>
</tr>
</thead>
<tbody>
<tr>
<td>men</td>
<td>102</td>
<td>63</td>
<td>39</td>
<td>38.2</td>
</tr>
<tr>
<td>women</td>
<td>135</td>
<td>48</td>
<td>87</td>
<td>64.4</td>
</tr>
</tbody>
</table>

Table 11 indicates that female interpreters add 2.5 times more hedges than men. For every 10 hedges women are exposed to, they omit 3 and add 12. For every 10 hedges men are exposed to, they omit 3 and add only 4. The frequency differences between male and female additions are highly significant ($\chi^2 = 16.03; df = 1; p < 0.001$). It is therefore safe to conclude that the explanation for the greater frequency of hedging by the women interpreters than the men is the females’ clear tendency to add more hedges when interpreting.

Given the language-specific trends observed above, we split the results in Table 11 into the two language pairs, so as to examine the differences in relation to
the strategies used by the interpreters for each target language. Table 12 presents the detailed results of this analysis, by language pair.

Table 12. Origin of the target text hedges, by language pair

<table>
<thead>
<tr>
<th>Language Pair</th>
<th>Total # source hedges</th>
<th>Total # target hedges</th>
<th># omitted</th>
<th># translated</th>
<th># added</th>
<th>% omitted source items</th>
<th>% added of all target hedges</th>
</tr>
</thead>
<tbody>
<tr>
<td>French-English</td>
<td>men 46</td>
<td>58</td>
<td>9</td>
<td>37</td>
<td>21</td>
<td>19.6</td>
<td>36.2</td>
</tr>
<tr>
<td></td>
<td>women 40</td>
<td>66</td>
<td>9</td>
<td>31</td>
<td>35</td>
<td>22.5</td>
<td>53</td>
</tr>
<tr>
<td>French-Dutch</td>
<td>men 46</td>
<td>44</td>
<td>20</td>
<td>26</td>
<td>18</td>
<td>43.5</td>
<td>40.9</td>
</tr>
<tr>
<td></td>
<td>women 29</td>
<td>69</td>
<td>12</td>
<td>17</td>
<td>52</td>
<td>58.6</td>
<td>75.3</td>
</tr>
</tbody>
</table>

Clearly, female interpreters add more hedges than male interpreters in both language pairs. The difference is near-significant in the French-English language pair and highly significant in the French-Dutch language pair ($\chi^2 = 1.83$, $df = 1$, $p = 0.06$; and $\chi^2 = 13.53$, $df = 1$, $p < 0.001$ respectively). Female interpreters also seem to omit slightly more hedges than their male counterparts in both language pairs, but the difference is not significant (for English, $\chi^2 = 0.11$, $df = 1$, $p > 0.05$; for Dutch, $\chi^2 = 0.03$, $df = 1$, $p > 0.05$).

In sum, the analysis highlights interesting trends: though we hypothesised that interpreters would use fewer hedges than the speakers they hear, they actually used more. While they omitted some hedges, they added even more. This is unexpected, and even counterintuitive, prompting interesting questions about the purpose of hedging, which we will briefly speculate on below. In addition, as expected, the corpus data also show a gender-related difference, with female interpreters outhedging their male colleagues. However, this trend is significant in only one of the two target languages examined; in Section 6, we will also briefly speculate on possible explanations for this finding.

6. Discussion

Additions are likely to prove counterproductive in simultaneous interpreting. The cognitive load interpreters face is extremely high and increases with each addition made. It therefore seemed both interesting and necessary to add a small-scale qualitative analysis of additions, in an attempt to find out what reasons interpreters might have for increasing their already demanding cognitive load. In principle,
Corpus data are unsuitable for research into the processes and motivations that drive interpreters’ choices: corpora reflect the product of the process, not the process. However, some traces of the interpreting process can be found in corpora: disfluencies, for instance, typically reflect cognitive efforts in the preparatory stage of the utterance (Levelt 1983; Plevoets & Defrancq, 2016). Similarly, possible explanations of interpreters’ strategies can be traced back, in some cases, to events that occur in the seconds prior to implementation of the strategies and these events might be reflected in the interpreting data.

There seem to be two types of contexts in which hedges are added. The first type is rather straightforward, as the addition aims at downtoning face-threatening acts by the speaker. This seems to be the case in example (11), where the added hedge is clearly source text-oriented:

(11) vos services étaient informés / c’était le moment de venir monsieur le président avec des propositions qui pourraient permettre de rassurer les épargnants européens sur le dépôt de garantie
[EPICG_08_10_08_preparationoftheeuropeancouncil_beres_pervenche_fr]

your services were informed *maybe* back then you should’ve been here with proposals to reassure Europe’s savers on things like deposit guarantees
[EPICG_08_10_08_preparationoftheeuropeancouncil_beres_pervenche_en]

On the other hand, hedges also seem to occur in cases where the interpreter struggles with the interpretation. In example (12), for instance, the hedge occurs at the start of a very hesitant stretch of interpreting, as underlined by the many occurrences of filled pauses (*euh*). In this case, the hedge seems to be target text-oriented:

(12) et de nos habitudes / il faut que nous soyons conscients de la pression que notre mode de vie exerce sur ceux qui n’y ont pas accès
[EPICG_08.10.08_formalsitting_betancourt_fr]

‘of our habits we have to be aware of the pressure that our life style puts on those who don’t have access to that’
van onze gewoontes *ik euh denk* dat we ons bewust moeten zijn van het feit dat *euh euh* onze levenswijze een enorme druk uitoefent
[EPICG_08.10.08_formalsitting_betancourt_fr]

So, added hedges seem to fulfil at least two different functions in interpreting: they allow interpreters to distance themselves with regard to speakers’ face-threatening acts; and it can also be argued that they are used apologetically by interpreters who seem to be struggling with cognitive overload. Much more research is, of course, needed to further explore these preliminary findings.
With regard to language-related differences, it seems that modal particles play a major role. As pointed out in Section 2, spoken Dutch uses these particles much more than the other languages included in the study. It appears from our corpus data that many of the additions observed in Dutch interpretations are actually modal particles, accounting to a significant extent for the observed gender asymmetry in Dutch: female interpreters add them a lot more than their male colleagues. It is unclear at this stage whether this is a general tendency in the linguistic usage of women, or limited to female interpreting output.

7. Conclusions

This paper aimed at studying gender differences in the use of hedges by European Parliament interpreters working in the English and Dutch booths during plenary sittings. Considering the cognitive load and the professional/theoretical norms of the simultaneous interpreting process, it was expected that interpreters would produce fewer hedges than the source text speakers. On the basis of the trends observed in spontaneous language, it was also expected that female interpreters would use more hedges than male interpreters.

Regarding the relative frequency of hedging by speakers and interpreters, the study yielded some unexpected results: the interpreters actually added hedges, defying all principles of interpreting economy. Interpreters work under heavy cognitive loads and are likely to omit elements which are not crucial to the propositional meaning of the message. Therefore, they are especially trained to distinguish the essential from the accessory. As hedges do not pertain to the core propositional meaning of the text, they are expected to be omitted under the high cognitive load.

Different factors could account for the interpreters’ tendency to hedge more than the source text speakers. Two of these factors were probably relevant here. On the one hand, a small-scale qualitative analysis of our data showed that the interpreters added source text-oriented hedges to downtone face-threatening utterances by the speaker. On the other hand, they also seem to have added target text-oriented hedges whenever tentative about their interpretation. This use of hedges as markers of uncertainty could also be linked with Monacelli’s theory (2009) of professional survival. Monacelli (2009: 53) considers the interpreting activity as “face-threatening since interpreters exhibit their translational performance in public and thus it can be inspected for errors”. It could be assumed that interpreters use, or even add, hedges so as to save face and avoid criticism. However, the scope of our study does not allow us to make a fuller assessment of the two possible explanations suggested here. They are provided as tentative hypotheses to explain the patterns identified in our data. Further research, including retrospective
Cédric Magnifico and Bart Defrancq interviews with the interpreters, is therefore needed to gain a better understanding of the reasons underpinning the hedging activity in interpreting.

Our analysis has also shown that gender differences in hedging are not as clear-cut as we would have expected. The male interpreters in our study used more hedges than the female interpreters, but they were also exposed to significantly more stimuli. When the data are corrected for this input factor, the women interpreters can be seen to have hedged more than the men. However, the difference was significant in only one of the language pairs. Among the three interpreting strategies which might account for target language hedges (omission, translation and addition), only addition seems relevant to the observed gender difference in frequency of hedges: the women and men interpreters omitted items to more or less the same extent, but the women used significantly more hedges in places where the source text contained none. In other words, the female interpreters added significantly more hedges than their male colleagues. This observation is consistent, at least for Dutch, with the trends observed by many scholars in spontaneous spoken language (Beeching 2002; Hartman 1976; Holmes 1990; Lakoff 1975; Östman 1981; Swacker 1979).

Finally, it should be pointed out that the data also presented a clear language-specific trend in use of hedges, probably because Dutch offers more hedging forms than English. Modal particles, in particular, which are widely used in Dutch but virtually non-existent in English, appear to make the observed gender gap even more conspicuous. Although much work has been done on gender-related trends in hedging, differences between men and women regarding the use of specific categories such as modal particles have not been explored so far.

References

Authors’ addresses

Cédric Magnifico
Department of Translation
Interpreting and Communication
Ghent University
Groot-Brittannielaan, 45
9000 Ghent
Belgium

Bart Defrancq
Bart.Defrancq@ugent.be

Biographical notes

Cédric Magnifico is a Research Assistant at Ghent University. Currently writing his PhD thesis in Interpreting Studies, he is conducting research on gender differences in simultaneous interpreting, focusing on the fields of interpersonal relationships and norms.

Bart Defrancq is an Associate Professor at Ghent University, where he was granted his PhD in Linguistics in 2002. He teaches interpretation and legal translation. His research focuses on topics ranging from contrastive linguistics to translation and interpreting studies, areas in which he has published widely. He is the editor of several special issues of Languages in Contrast, Belgian Journal of Linguistics and Across Languages and Cultures.