Review published In:
Journal of Historical Linguistics
Vol. 14:2 (2024) ► pp.376384
Chen, X., L. Xu, Z. Liu, M. Sun & H. -B. Luan
2015Joint Learning of Character and Word Embeddings. Proceedings of IJCAI 2015, 1236–1242. Cambridge, MA: AAAI Press.Google Scholar
Davies, M.
2008The Corpus of Contemporary American English (COCA): 560 Million Words, 1990–Present.Google Scholar
2012Expanding Horizons in Historical Linguistics with the 400-Million Word Corpus of Historical American English. Corpora 7:2.121–157. DOI logoGoogle Scholar
Devlin, J., M. -W. Chang, K. Lee & K. Toutanova
2019BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) ed. by Jill Burstein, Christy Doran & Thamar Solorio, 4171–4186. Minneapolis, MN: Association for Computational Linguistics.Google Scholar
Frermann, L. & M. Lapata
2016A Bayesian Model of Diachronic Meaning Change. Transactions of the ACL 41:31–45. DOI logoGoogle Scholar
Hamilton, W. L., J. Leskovec & D. Jurafsky
2016Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) ed. by Katrin Erk & Noah A. Smith, 1489–1501. Berlin: Association for Computational Linguistics. DOI logoGoogle Scholar
Haslam, N.
2016Concept Creep: Psychology’s Expanding Concepts of Harm and Pathology. Psychological Inquiry 27:1.1–17. DOI logoGoogle Scholar
Joulin, A., E. Grave, P. Bojanowski, M. Douze, H. Jégou & T. Mikolov, T. Compressing Text Classification Models. arXiv preprint arXiv:1612.03651.Google Scholar
McGillivray, B. & A. Kilgarriff
2013Tools for Historical Corpus Research and a Corpus of Latin. New Methods in Historical Corpus Linguistics ed. by P. Bennett, M. Durrell, S. Scheible & R. J. Whitt, 247–257. Tübingen: Narr.Google Scholar
Michel, J. -B., Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, The Google Books Team, J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak & E. L. Aiden
2011Quantitative Analysis of Culture Using Millions of Digitized Books. Science 331:6014.176–182. DOI logoGoogle Scholar
Mikolov, T., I. Sutskever, K. Chen, G. Corrado & J. Dean
2013Distributed Representations of Words and Phrases and their Compositionality. Advances in Neural Information Processing Systems 261:3111–3119.Google Scholar
Turney, P. D. & P. Pantel
2010From Frequency to Meaning: Vector Space Models of Semantics. Journal of Artificial Intelligence Research 37:1.141–188. DOI logoGoogle Scholar
Vatri, A. & B. McGillivray
2018The Diorisis Ancient Greek Corpus. Research Data Journal for the Humanities and Social Sciences 3:1.55–65. DOI logoGoogle Scholar
Wiedemann, G., S. Remus, A. Chawla & C. Biemann
2019Does BERT Make any Sense? Interpretable Word Sense Disambiguation with Contextualized Embeddings. In Proceedings of KONVENS 2019. Erlangen, Germany, October 9–11.Google Scholar
Yao, Z., Y. Sun, W. Ding, N. Rao & H. Xiong
2018Dynamic Word Embeddings for Evolving Semantic Discovery. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 673–681. Marina Del Rey, CA, February 5–9. DOI logoGoogle Scholar