Part of
Crossroads Semantics: Computation, experiment and grammar
Edited by Hilke Reckman, Lisa Lai-Shen Cheng, Maarten Hijzelendoorn and Rint Sybesma
[Not in series 210] 2017
► pp. 2337
References (55)
References
Bargh, John A., Mark Chen & Lara Burrows. 1996. Automaticity of social behavior: Direct effects of trait construct and stereotype activation on action. Journal of Personality and Social Psychology 71(2). 230–244. DOI logo.Google Scholar
Bornmann, Lutz, Rüdiger Mutz & Hans-Dieter Daniel. 2010. A reliability-generalization study of journal peer reviews: a multilevel meta-analysis of inter-rater reliability and its determinants. PLoS ONE 5(12). e14331. DOI logoGoogle Scholar
Breiman, Leo. 2001. Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Statistical Science 16(3). 199–231. DOI logoGoogle Scholar
Button, Katherine S., John P. A. Ioannidis, Claire Mokrysz, Brian A. Nosek, Jonathan Flint, Emma S. J. Robinson & Marcus R. Munafò. 2013. Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience 14(5). 365–376. DOI logoGoogle Scholar
Carp, Joshua. 2012. The secret lives of experiments: Methods reporting in the fMRI literature. NeuroImage 63(1). 289–300. DOI logoGoogle Scholar
Cohen, Jacob. 1994. The earth is round (p < .05). American Psychologist 49(12). 997–1003. DOI logoGoogle Scholar
Collobert, Ronan & Jason Weston. 2008. A unified architecture for natural language processing: deep neural networks with multitask learning. the 25th international conference. New York, NY: ACM. DOI logoGoogle Scholar
Coyne, James C & Jacob N de Voogd. 2012. Are we witnessing the decline effect in the Type D personality literature? What can be learned? Journal of psychosomatic research 73(6). 401–407. DOI logoGoogle Scholar
Doyen, Stéphane, Olivier Klein, Cora-Lise Pichon & Axel Cleeremans. 2012. Behavioral priming: It’s all in the mind, but whose mind? PLoS ONE 7(1). e29081. DOI logoGoogle Scholar
Dreber, Anna, Thomas Pfeiffer, Johan Almenberg, Siri Isaksson, Brad Wilson, Yiling Chen, Brian A. Nosek & Magnus Johannesson. 2015. Using prediction markets to estimate the reproducibility of scientific research. Proceedings of the National Academy of Sciences 112(50). 15343–15347. DOI logoGoogle Scholar
Falk, Ruma & Charles W. Greenbaum. 1995. Significance tests die hard: The amazing persistence of a probabilistic misconception. Theory & Psychology 5(1). 75–98. DOI logoGoogle Scholar
Fanelli, Daniele. 2010. “Positive” results increase down the hierarchy of the sciences. PLoS ONE 5(4). e10068. DOI logoGoogle Scholar
Fugelsang, Jonathan A., Courtney B. Stein, Adam E. Green & Kevin N. Dunbar. 2004. Theory and data interactions of the scientific mind: Evidence from the molecular and the cognitive laboratory. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale 58(2). 86–95. DOI logoGoogle Scholar
Gigerenzer, Gerd. 2004. Mindless statistics. The Journal of Socio-Economics 33(5). 587–606. DOI logoGoogle Scholar
Gilbert, Daniel T., Gary King, Stephen Pettigrew & Timothy D. Wilson. 2016. Comment on “Estimating the reproducibility of psychological science”. Science 351(6277). 1037–1037. DOI logoGoogle Scholar
Greenberg, Steven A. 2009. How citation distortions create unfounded authority: analysis of a citation network. BMJ (Clinical research ed.) 339. b2680. DOI logoGoogle Scholar
Greenwald, Anthony G. 2012. There is nothing so theoretical as a good method. Perspectives on Psychological Science. DOI logoGoogle Scholar
Hill, Ray. 2004. Multiple sudden infant deaths – coincidence or beyond coincidence? Paediatric and perinatal epidemiology 18(5). 320–326. Blackwell Science Ltd. DOI logoGoogle Scholar
Ioannidis, John P. A. 2005. Why most published research findings are false. PLoS Medicine 2(8). e124. DOI logoGoogle Scholar
Ioannidis, John P A. 2008. Why most discovered true associations are inflated. Epidemiology 19(5). 640–648. DOI logoGoogle Scholar
Ioannidis, John P.A. 2012. Why science is not necessarily self-correcting. Perspectives on Psychological Science: A Journal of the Association for Psychological Science 7(6). 645–654. DOI logoGoogle Scholar
Ioannidis, John P. A., Kevin W. Boyack, Henry Small, Aaron A. Sorensen & Richard Klavans. 2014. Bibliometrics: Is your most cited work your best? Nature 514(7524). 561–562. DOI logoGoogle Scholar
Kahneman, Daniel. 2013. Thinking, fast and slow. Farrar, Straus and GirouxGoogle Scholar
Klein, Richard A., Kate A. Ratliff, Michelangelo Vianello, Reginald B. Adams, Štěpán Bahník, Michael J. Bernstein, Konrad Bocian, et al. 2014. Investigating variation in replicability. Social Psychology 45(3). 142–152. DOI logoGoogle Scholar
Kramer, Adam D. I., Jamie E. Guillory & Jeffrey T. Hancock. 2014. Experimental evidence of massive-scale emotional contagion through social networks. Proceedings of the National Academy of Sciences 111(24). 8788–8790. DOI logoGoogle Scholar
Kriegeskorte, Nikolaus. 2012. An emerging consensus for open evaluation: 18 visions for the future of scientific publishing. 1–5. DOI logoGoogle Scholar
Kriegeskorte, Nikolaus, Marieke Mur & Peter Bandettini. 2008. Representational similarity analysis – connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience 2Google Scholar
Lazer, David, Ryan Kennedy, Gary King & Alessandro Vespignani. 2014. Big data. The parable of Google Flu: Traps in big data analysis. Science 343(6176). 1203–1205. DOI logoGoogle Scholar
Lindley, Dennis V. 2000. The philosophy of statistics. Journal of the Royal Statistical Society: Series D (The Statistician) 49(3). 293–337Google Scholar
Loftus, Geoffrey R. 1993. A picture is worth a thousand p values: On the irrelevance of hypothesis testing in the microcomputer age. Behavior Research Methods, Instruments, & Computers 25(2). 250–256. DOI logoGoogle Scholar
Maxwell, Scott E. 2004. The persistence of underpowered studies in psychological research: Causes, consequences, and remedies. Psychological Methods 9(2). 147–163. DOI logoGoogle Scholar
Meehl, Paul E. 1978. Theoretical risks and tabular asterisks: Sir Karl, Sir Ronald, and the slow progress of soft psychology. Journal of Consulting and Clinical Psychology. DOI logoGoogle Scholar
1993. Philosophy of science: Help or hindrance? Psychological Reports 72(3). 707–733. DOI logoGoogle Scholar
Meehl, PE. 1967. Theory-testing in psychology and physics: A methodological paradox. Philosophy of science 34(2). 103–115. DOI logoGoogle Scholar
Miller, G. 2012. The smartphone psychology manifesto. Perspectives on Psychological Science: A Journal of the Association for Psychological Science 7(3). 221–237. DOI logoGoogle Scholar
Munafo, Marcus. 2013. Deep impact: Unintended consequences of journal rank. 1–33.Google Scholar
Nickerson, R. S. 2000. Null hypothesis significance testing: A review of an old and continuing controversy. Psychological methods 5(2). 241–301. DOI logoGoogle Scholar
Nuijten, Michèle B., Chris H. J. Hartgerink, Marcel A. L. M. van Assen, Sacha Epskamp & Jelte M. Wicherts. 2015. The prevalence of statistical reporting errors in psychology (1985–2013). Behavior Research Methods. 1–22. DOI logoGoogle Scholar
Open Science Collaboration. 2015. Estimating the reproducibility of psychological science. Science 349(6251). aac4716–aac4716. DOI logoGoogle Scholar
Pfeiffer, Thomas, Lars Bertram & John P. A. Ioannidis. 2011. Quantifying selective reporting and the Proteus phenomenon for multiple datasets with similar bias. PLoS ONE 6(3). e18362. DOI logoGoogle Scholar
Rodriguez-Esteban, Raul, Ivan Iossifov & Andrey Rzhetsky. 2006. Imitating manual curation of text-mined facts in biomedicine. PLoS computational biology 2(9). e118. DOI logoGoogle Scholar
Rosenthal, Robert. 1979. The file drawer problem and tolerance for null results. Psychological Bulletin 86(3). 638–641. DOI logoGoogle Scholar
Rosenthal, Robert & John Gaito. 1963. The interpretation of levels of significance by psychological researchers. The Journal of Psychology 55(1). 33–38. DOI logoGoogle Scholar
Rutledge, Robb B., Nikolina Skandali, Peter Dayan & Raymond J. Dolan. 2014. A computational and neural model of momentary subjective well-being. Proceedings of the National Academy of Sciences 111(33). 12252–12257. DOI logoGoogle Scholar
Shmueli, Galit. 2010. To explain or to predict? Statistical Science 25(3). 289–310. DOI logoGoogle Scholar
Simmons, Joseph P., Leif D. Nelson & Uri Simonsohn. 2011. False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science 22(11). 1359–1366. DOI logoGoogle Scholar
Simonsohn, Uri, Leif D. Nelson & Joseph P. Simmons. 2014. P-curve: A key to the file-drawer. Journal of Experimental Psychology: General 143(2). 534. DOI logoGoogle Scholar
Thompson, William C. & Edward L. Schumann. 1987. Interpretation of statistical evidence in criminal trials: The prosecutor’s fallacy and the defense attorney’s fallacy. Law and Human Behavior 11(3). Springer. 167–187. DOI logoGoogle Scholar
Tversky, Amos & Daniel Kahneman. 1971. Belief in the law of small numbers. Psychological Bulletin 76(2). 105. DOI logoGoogle Scholar
Tyler, Lorraine K, Teresa P. L. Cheung, Barry J. Devereux & Alex Clarke. 2013. Syntactic computations in the language network: Characterizing dynamic network properties using representational similarity analysis. Frontiers in Psychology 4. 271. DOI logoGoogle Scholar
Wainer, Howard. 2007. The most dangerous equation. American Scientist. DOI logoGoogle Scholar
Wicherts, Jelte M. & Marcel A. L. M. van Assen. 2012. Research fraud: Speed up reviews of misconduct. Nature 488(7413). 591–591. DOI logoGoogle Scholar
Yarkoni, Tal, Russell A. Poldrack, Thomas E. Nichols, David C. Van Essen & Tor D. Wager. 2011. Large-scale automated synthesis of human functional neuroimaging data. Nature methods 8(8). 665–670. DOI logoGoogle Scholar
Yong, Ed. 2012. Replication studies: Bad copy. Nature. DOI logoGoogle Scholar
Young, Neal S., John P. A. Ioannidis & Omar Al-Ubaydli. 2008. Why current publication practices may distort science. PLoS Medicine 5(10). e201. DOI logoGoogle Scholar