Part of
Approaches to Hungarian: Volume 14: Papers from the 2013 Piliscsaba Conference
Edited by Katalin É. Kiss, Balázs Surányi and Éva Dékány
[Approaches to Hungarian 14] 2015
► pp. 147165
References (47)
References
Abari, Kálmán & Gábor Olaszy. 2012. A formánsmenetek rendszere CVC kapcsolatok magánhangzóiban a C képzési helyének függvényében [The system of vowel formant trajectories in CVC sequences depending on the place of articulation of the consonants]. In: Mária Gósy (ed.), Beszédkutatás 2012 [Speech Research 2012], 70–93. Budapest: MTA Nyelvtudományi Intézet Kempelen Farkas Beszédkutató Laboratórium.Google Scholar
Beke, András & Tekla Etelka Gráczi. 2010. A magánhangzók semlegesedése a spontán beszédben [Vowel neutralisation in spontaneous speech]. In: Judit Navracsics (ed.), Nyelv, beszéd, írás. Pszicholingvisztikai tanulmányok I. [Language, speech, and writing. Studies in psycholinguistics, vol. I], 57–64. Veszprém: Pannon Egyetem.Google Scholar
Bezdek, James C. 1981. Pattern recognition with fuzzy objective function algorithms. New York: Plenum Press. DOI logoGoogle Scholar
Boersma, Paul & David Weenink. 2011. Praat: Doing phonetics by computer. [URL] (25 October 2011)
Bolla, Kálmán. 1995. Magyar fonetikai atlasz. A szegmentális hangszerkezet elemei [An atlas of Hungarian phonetics. Elements of segmental sound structure]. Budapest: Nemzeti Tankönyvkiadó.Google Scholar
Brunner, Jana, Satrajit Ghosh, Philip Hoole, Melanie Matthies, Mark Tiede & Joseph Perkell. 2011. The influence of auditory acuity on acoustic variability and the use of motor equivalence during adaptation to a perturbation. Journal of Speech, Language, and Hearing Research 54. 727–739. DOI logoGoogle Scholar
Chomsky, Noam & Morris Halle. 1968. The sound pattern of English. New York: Harper and Row.Google Scholar
Dankovičová, Jana & Francis Nolan. 1999. Some acoustic effects of speaking style on utterances for automatic speaker verification. Journal of the International Phonetic Association 29. 115–229. DOI logoGoogle Scholar
Diehl, Randy L., Björn Lindblom, Kathryn A. Hoemeke & Richard P. Fahey. 1996. On explaining certain male-female differences in the phonetic realization of vowel categories. Journal of Phonetics 24. 187–208. DOI logoGoogle Scholar
Eckert, Penelope. 1989. The whole woman: Sex and gender differences in variation. Language Variation and Change 1. 245–267. DOI logoGoogle Scholar
Fant, Gunnar. 1973. Speech sounds and features. Cambridge MA and London: MIT Press.Google Scholar
Gelfer, Marylou Pausewang & Victoria A. Mikos. 2005. The relative contributions of speaking fundamental frequency and formant frequencies to gender identification based on isolated vowels. Journal of Voice 19. 544–554. DOI logoGoogle Scholar
Giegerich, Heinz J. 1992. English phonology: An introduction. Cambridge: Cambridge Univeristy Press. DOI logoGoogle Scholar
Gósy, Mária. 2004. Fonetika, a beszéd tudománya [Phonetics, the science of speech]. Budapest: Osiris Kiadó.Google Scholar
. 2012a. BEA – A multifunctional Hungarian spoken language database. The Phonetician 105/106. 50–61.Google Scholar
2012b. Az alsóbb nyelvállású magyar magánhangzók formánsszerkezete [The formant structure of Hungarian low vowels]. In: Mária Gósy (ed.), Beszéd, adatbázis, kutatások [Speech, database, research], 43–66. Budapest: Akadémiai Kiadó.Google Scholar
Gráczi, Tekla Etelka & Viktória Horváth. 2010. A magánhangzók realizációja spontán beszédben [The realisation of vowels in spontaneous Hungarian]. In: Mária Gósy (ed.), Beszédkutatás 2010 [Speech Research 2010], 5–16. Budapest: MTA Nyelvtudományi Intézet Kempelen Farkas Beszédkutató LaboratóriumGoogle Scholar.
Hayes, Bruce, Kie Zuraw, Péter Siptár & Zsuzsa Londe. 2009. Natural and unnatural constraints in Hungarian vowel harmony. Language 85. 821–862. 10.1353/lan.0.0169.Google Scholar
Henton, Caroline. 1995. Cross-language variation in the vowels of female and male speakers. In: Kjell Elenius & Peter Branderud (eds.), Proceedings of the XIIIth International Congress of Phonetic Sciences, 420–423. Stockholm: Stockholm University.Google Scholar
Hillenbrand, James M. & Michael J. Clark. 2009. The role of f0 and formant frequencies in distinguishing the voices of men and women. Attention, Perception, & Psychophysics 71. 1150–1166. DOI logoGoogle Scholar
Johnson, Keith. 1997. Speech perception without speaker normalization: An exemplar model. In: Keith Johnson & John W. Mullenix (eds.), Talker variability in speech processing, 145–166. San Diego: Academic Press.Google Scholar
Kahn, Juliette, Nicolas Audibert, Jean-François Bonastre & Solange Rossato. 2011. Inter- and intra-speaker variability in French: an analysis of oral vowels and its implication for automatic speaker verification. In: Wai-Sum Lee & Eric Zee (eds.), Proceedings of the XVIIth International Congress of Phonetic Sciences, 1002–1005. Hong Kong: University of Hong Kong.Google Scholar
Kempelen, Wolfgang von. 1791. Mechanismus der menschlichen Sprache nebst der Beschreibung seiner sprechenden Maschine. Wien: J. V. Degen.Google Scholar
Kovács, Magdolna. 2004. Pros and cons about Hungarian [a:]. Grazer Linguistische Studien 62. 65–75.Google Scholar
Labov, William. 1994. Principles of linguistic change. I. Internal factors. Oxford: Basil Blackwell.Google Scholar
Lindblom, Björn. 1990. Explaining phonetic variation: a sketch of the H and H theory. In: William J. Hardcastle & Alain Marchal (eds.), Speech production and speech modelling, 403–440. Dordrecht: Kluwer. DOI logoGoogle Scholar
Lindblom, Björn, Randy Diehl & Carl Creeger. 2009. Do ‘Dominant Frequencies’ explain the listener’s response to formant and spectrum shape variations? Speech Communication 51. 622–629. DOI logoGoogle Scholar
Magdics, Klára. 1965. A magyar beszédhangok akusztikai szerkezete [The acoustic structure of Hungarian speech sounds]. Nyelvtudományi Értekezések 49. Budapest: Akadémiai Kiadó.Google Scholar
Mooshammer, Christine, Pascal Perrier & Susanne Fuchs. 2008. Speaker-specific patterns of token-to-token variability. Journal of the Acoustical Society of America 123. 3076–3076. DOI logoGoogle Scholar
Obleser, Jonas, Thomas Elbert, Aditi Lahiri & Carsten Eulitz. 2003. Cortical representation of vowels reflects acoustic dissimilarity determined by formant frequencies. Cognitive Brain Research 15. 207–213. DOI logoGoogle Scholar
Ohala, John. 1993. The phonetics of sound change. In Charles Jones (ed.), Historical linguistics: Problems and perspectives, 237–278. Harlow, Essex: Longman.Google Scholar
Ohala, John J. 2012. The listener as a source of sound change (perception, production, and social factors). In Maria-Josep Solé & Daniel Recasens (eds.), The initiation of sound change, 21–36. Amsterdam: John Benjamins. DOI logoGoogle Scholar
Olaszy, Gábor. 1985. A magyar beszéd leggyakoribb hangsorépítő elemeinek szerkezete és szintézise [The structure and synthesis of the most frequent constitutive elements of Hungarian speech]. Nyelvtudományi Értekezések 121. Budapest: Akadémiai Kiadó.Google Scholar
Pettigrew, Andrew M. 1990. Longitudinal field research on change: Theory and practice. Organization Science 1. 267–292. DOI logoGoogle Scholar
Pierrehumbert, Janet. 2001. Exemplar dynamics: Word frequency, lenition, and contrast. In: Joan Bybee & Paul Hopper (eds.), Frequency effects and the emergence of linguistic structure, 137–157. Amsterdam: John Benjamins. DOI logoGoogle Scholar
Rebrus, Péter, Péter Szigetvári & Miklós Törkenczy. 2012. Dark secrets of Hungarian vowel harmony. In: Eugeniusz Cyran, Henryk Kardela & Bogdan Szymanek (eds.), Sound, structure and sense. Studies in memory of Edmund Gussmann, 491–508. Lublin: Wydawnictwo KUL.Google Scholar
Recasens, Daniel & Aina Espinosa. 2006. Dispersion and variability of Catalan vowels. Speech Communication 48. 645–666. DOI logoGoogle Scholar
Shiller, Douglas M., Rafael Laboissière & David J. Ostry. 2002. Relationship between jaw stiffness and kinematic variability in speech. Journal of Neurophysiology 88. 2329–2340. DOI logoGoogle Scholar
Siptár, Péter & Miklós Törkenczy. 2000. The phonology of Hungarian. Oxford & New York: Oxford University Press.Google Scholar
Slifka, Janet. 2005. Acoustic cues to vowel–schwa sequences for high front vowels. Journal of the Acoustical Society of America 118. 2037. DOI logoGoogle Scholar
Szende, Tamás. 1999. Hungarian. In: Handbook of the International Phonetic Association, 104–107. Cambridge: Cambridge University Press.Google Scholar
Tarnóczy, Tamás. 1965. Acoustic analysis of Hungarian vowels. Quarterly Progress and Status Report 1. 8–12. (Speech Transmission Laboratory–KHT, Stockholm).Google Scholar
Törkenczy, Miklós. 2011. Hungarian vowel harmony. In Marc van Oostendorp, Colin Ewen, Elizabeth Hume & Keren Rice (eds.), The Blackwell companion to phonology, 2963–2989. Oxford: Wiley-Blackwell.Google Scholar
Törkenczy, Miklós, Péter Szigetvári & Péter Rebrus. 2013. Harmony that cannot be represented. In Johan Brandtler, Valéria Molnár & Christer Platzack (eds.), Approaches to Hungarian. Volume 13: Papers from the 2011 Lund Conference, 229–252. Amsterdam & Philadelphia: John Benjamins. DOI logoGoogle Scholar
Vértes, O. András. 1980. A magyar leíró hangtan története az újgrammatikusokig [The history of descriptive Hungarian phonology up to the Neogrammarians]. Budapest: Akadémiai Kiadó.Google Scholar
. 1982. Az artikuláció akusztikus vetülete [The acoustic projection of articulation]. In Kálmán Bolla (ed.), Fejezetek a magyar leíró hangtanból [Chapters from descriptive Hungarian phonetics], 155–165. Budapest: Akadémiai Kiadó.Google Scholar
Wardhaugh, Ronald. 2006. An introduction to sociolinguistics. Fifth edition. Malden MA: Blackwell.Google Scholar
Cited by (1)

Cited by one other publication

Siptár, Péter
2015. Neutrality and variation: what are they?. Theoretical Linguistics 41:1-2 DOI logo

This list is based on CrossRef data as of 4 july 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.