Article published In:
Evolutionary Linguistic Theory
Vol. 5:2 (2023) ► pp.162193
References (91)
References
Bergelson, E., Casillas, M., Soderstrom, M., Seidl, A., Warlaumont, A. S., & Amatuni, A. (2019). What do North American babies hear? A large-scale cross-corpus analysis. Developmental Science, 22 (1), article e127224. DOI logoGoogle Scholar
Berwick, R. C. (2011). All you need is Merge: Biology, computation, and language from the bottom-up. In A. M. di Sciullo & C. Boeckx, The Biolinguistic Enterprise: New Perspectives on the Evolution and Nature of the Human Language Faculty, 461–491. Oxford: Oxford University Press.Google Scholar
Berwick, R. C., & Chomsky, N. (2016). Why Only Us: Language and Evolution. Cambridge, MA: MIT Press.Google Scholar
(2017). Why only us: recent questions and answers. Journal of Neurolinguistics, 43 1, 166–177. DOI logoGoogle Scholar
Blakemore, C., & Cooper, G. F. (1970). Development of the brain depends on the visual environment. Nature, 228 (5270), 477–478. DOI logoGoogle Scholar
Brauer, J., Anwander, A., Perani, D., & Friederici, A. D. (2013). Dorsal and ventral pathways in language development. Brain and Language, 127 (2), 289–295. DOI logoGoogle Scholar
Brentari, D. & Goldin-Meadow, S. (2017). Language emergence. Annual Review of Linguistics, 3 1, 363–388. DOI logoGoogle Scholar
Breyl, M. (2021). Triangulating Neanderthal cognition: A tale of not seeing the forest for the tress. WIRES Cognitive Science, 12 (2), article e1545. DOI logoGoogle Scholar
(2023). The linguist’s guide to human fallibility and biases: Their evolution, cognitive significance and impact in decision making. Linguistische Treffen in Wrocław, 23 (1), 17–37. DOI logoGoogle Scholar
Carmody, R. N., Weintraub, G. S., & Wrangham, R. W. (2011). Energetic consequences of thermal and nonthermal food processing. Proceedings of the National Academy of Sciences of the United States of America, 108 (48), 19199–19203. DOI logoGoogle Scholar
Casillas, M., Brown, P., & Levinson, S. C. (2019). Early language experience in a Tseltal Mayan village. Child Development, 91 (5), 1819–1835. DOI logoGoogle Scholar
Casillas, M., Brown, P. & Levinson, S. C. (2020). Early language experience in a Papuan community. Journal of Child Language, 48 (4), 792–814.DOI logoGoogle Scholar
Chomsky, N. (1976a). Reflections on Language. London: Fontana.Google Scholar
(1976b). On the nature of language. In S. Harnad, H. D. Steklis & J. Lancaster (eds.), Origins and Evolution of Language and Speech, 46–57. New York: New York Academy of Sciences.Google Scholar
(1991). Linguistics and cognitive science: Problems and mysteries. In Asa Kasher (ed.), The Chomskyan Turn: Generative Linguistics, Philosophy, Mathematics, and Psychology, 26–55. Oxford: Blackwell.Google Scholar
(2002). On Nature and Language (A. Belletti & L. Rizzi, eds.). Cambridge: Cambridge University Press.Google Scholar
Cowley, S. J. (2001). The baby, the bathwater and the “language instinct” debate. Language Sciences, 23 (1), 69–91. DOI logoGoogle Scholar
Dąbrowska, E. (2015). What exactly is Universal Grammar, and has anyone seen it? Frontiers in Psychology, 6 1, article 852. DOI logoGoogle Scholar
Dapschauskas, R., Göden, M. B., Sommer, C. & Kandel, A. W. (2022). The emergence of habitual ochre use in Africa and its significance for the development of ritual behavior during the middle stone age. Journal of World Prehistory, 35 1, 233–319. DOI logoGoogle Scholar
de Boer, B., Thompson, B., Ragignani, A., & Boeckx, C. (2020). Evolutionary dynamics do not motivate a single-mutant theory of human language. Scientific Reports, 10 1, article 451. DOI logoGoogle Scholar
Deacon, T. (1997). The Symbolic Species: The Co-Evolution of Language and the Human Brain. London: Penguin Press.Google Scholar
Dediu, D. (2021). Tone and genes: new cross-linguistic data and methods support the weak negative effect of the “derived” allele ASPM on tone, but not of Microcephalin . PLOS ONE, 16 (6), article e0253546. DOI logoGoogle Scholar
Dediu, D., & Ladd, D. R. (2007). Linguistic tone is related to the population frequency of the adaptive haplogroups of two brain size genes, ASPM and Microcephalin . Proceedings of the National Academy of Sciences of the United States of America, 104 (26), 10944–10949. DOI logoGoogle Scholar
Dediu, D., & Levinson, S. C. (2013). On the antiquity of language: The reinterpretation of Neandertal linguistic capacities and its consequences. Frontiers in Psychology, 4 1, article 397. DOI logoGoogle Scholar
(2018). Neanderthal language revisited: Not only us. Current Opinion in Behavioral Sciences, 21 1, 49–55. DOI logoGoogle Scholar
Dékány, É. (2019). Foundations of generative linguistics. Acta Linguistica Academia, 66 (3), 309–334. DOI logoGoogle Scholar
Enard, W., Przeworski, M., Fischer, S. E., Lai, C. S. L., Wiebe, V., … Pääbo, S. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418 (6900), 869–872. DOI logoGoogle Scholar
Fitch, W. T. (2014). Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition. Physics of Life Reviews, 11 1, 329–364. DOI logoGoogle Scholar
Fitch, W. T., Hauser, M. D. & Chomsky, N. (2005). The evolution of the language faculty: Clarifications and implications. Cognition, 97 (2), 179–210.Google Scholar
Garcia, J., Kimeldorf, D. J., & Koelling, R. A. (1955). Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science, 122 (3160), 157–158. DOI logoGoogle Scholar
Garcia, J., & Koelling, R. A. (1966). Relation of cue to consequence in avoidance learning. Psychonomic Science, 4 (3), 123–124. DOI logoGoogle Scholar
Goaillard, J.-M. & Marder, E. (2021). Ion channel degeneracy, variability, and covariation in neuron and circuit resilience. Annual Review of Neuroscience, 44 1, 335–357. DOI logoGoogle Scholar
Goldberg, A. E. (2006). Constructions at Work: The Nature of Generalization in Language. Oxford and New York: Oxford University Press.Google Scholar
(2019). Explain Me This: Creativity, Competition and the Partial Productivity of Constructions. Princeton: Princeton University Press.Google Scholar
Gopnik, M. (1990a). Feature-blind grammar and dysphasia. Nature, 344 (6268), 715. DOI logoGoogle Scholar
(1990b). Genetic basis of grammar defect. Nature, 347 (6288), 26. DOI logoGoogle Scholar
Gopnik, M., & Crago, M. B. (1991). Familial aggregation of a developmental language disorder. Cognition, 39 1, 1–50. DOI logoGoogle Scholar
Gowlett, J. A. J. (2016). The discovery of fire by humans: A long and convoluted process. Philosophical Transactions of the Royal Society B, 371 1, article 20150164. DOI logoGoogle Scholar
Hartshorne, J. K., Tenenbaum, J. B., & Pinker, S. (2018). A critical period for second language acquisition: Evidence from 2/3 million English speakers. Cognition, 177 1, 263–277. DOI logoGoogle Scholar
Hauser, M. D., Chomsky, N. & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298 (5598), 1569–1579.Google Scholar
Hopper, P. J. (1998). Emergent grammar. In M. Tomasello (ed.), The New Psychology of Language: Cognitive and Functional Approaches to Language Strucutre, 155–175. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Hubel, D. H. (1995). Eye, Brain, and Vision. New York & Oxford: Scientific American Library.Google Scholar
Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurons in the cat’s striate cortex. The Journal of Physiology, 148 (3), 574–591. DOI logoGoogle Scholar
(1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. The Journal of Physiology, 206 (2), 419–436. DOI logoGoogle Scholar
Hurst, J. A., Baraitser, M., Auger, E., Graham, F., & Norell, S. (1990). An extended family with a dominantly inherited speech disorder. Developmental Medicine and Child Neurology, 32 (4), 352–355. DOI logoGoogle Scholar
Itan, Y., Powell, A., Beaumont, M. A., Burger, J., & Thomas, M. G. (2009). The origins of lactase persistence in Europe. PLOS Computational Biology, 5 (8), article e1000491. DOI logoGoogle Scholar
Jacob, F. (1977). Evolution and tinkering. Science, 196 (4295), 1161–1166. DOI logoGoogle Scholar
Kissine, M. (2021). Autism, constructionism and nativism. Language, 97 (3), e139–e160. DOI logoGoogle Scholar
Kissine, M., Luffin, X., Aiad, F., Bourourou, R., Deliens, G., & Gaddour, N. (2019). Noncolloquial Arabic in Tunisian children with Autism Spectrum Disorder: A possible instance of language acquisition in a noninteractive context. Language Learning, 69 (1), 44–70. DOI logoGoogle Scholar
Krause, J., Lalueza-Fox, C., Orlando, L., Enard, W., Green, R. E., Burbano, H. A., … Pääbo, S. (2007). The derived FOXP2 variant of modern humans was shared with Neandertals. Current Biology, 17 (21), 1908–1912. DOI logoGoogle Scholar
Kuhl, P. K. (2007). Is speech learning ‘gates’ by the social brain? Developmental Science, 10 (1), 110–120. DOI logoGoogle Scholar
(2010). Brain mechanisms in early language acquisition. Neuron, 67 (5), 713–727. DOI logoGoogle Scholar
Kuhl, P. K., Stevens, E., Hayashi, A., Deguchi, T., Kiritani, S., & Iverson, P. (2006). Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Developmental Science, 9 (2), 13–21. DOI logoGoogle Scholar
Kuhl, P. K., Tsao, F.-M., & Liu, H.-M. (2003). Foreign-language experience in infancy: Effects of short-term exposure and social interaction on phonetic learning. Proceedings of the National Academy of Sciences of the United States of America, 100 (15), 9096–9101. DOI logoGoogle Scholar
Lai, C. S. L., Fischer, S. E., Hurst, J. A., Vargha-Kadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413 (6855), 519–523. DOI logoGoogle Scholar
Laland, K. N. (2008). Exploring gene – culture interactions: Insights from handedness, sexual selection and niche-construction case studies. Philosophical Transactions of the Royal Society B, 363 (1509), 3577–3589. DOI logoGoogle Scholar
Levinson, S. C., & Dediu, D. (2013). The interplay of genetic and cultural factors in ongoing language evolution. In P. J. Richerson & M. H. Christiansen (eds.), Cultural evolution. Society, technology, language, and religion, 219–232. Cambride, MA: MIT Press.Google Scholar
Lidz, J. & Gagliardi, A. (2015). How nature meets nurture: Universal grammar and statistical learning. Annual Review of Linguistics 1 1, 333–2353. DOI logoGoogle Scholar
Livingstone, M., & Hubel, D. H. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240 (4853), 740–749. DOI logoGoogle Scholar
MacWhinney, B. (1998). Models of the emergence of language. Annual Review of Psychology, 49 (1), 199–227. DOI logoGoogle Scholar
Malmström, H., Linderholm, A., Lidén, K., Storå, J., Molnar, P., Holmund, G., Jakobsson, M., & Götherström, A. (2010). High frequency of lactose intolerance in a prehistoric hunter-gatherer population in northern Europe. BMC Evolutionary Biology, 10 1, article 89. DOI logoGoogle Scholar
Mameli, M., & Bateson, P. (2011). An evaluation of the concept of innateness. Philosophical Transactions of the Royal Society B, 366 (1563), 436–443. DOI logoGoogle Scholar
Martins, P. T., & Boeckx, C. (2019). Language evolution and complexity considerations: The no half-Merge fallacy. PLOS Biology, 17 (11), Article e3000389. DOI logoGoogle Scholar
Mayberry, R. I., Lock, E., & Kazmi, H. (2002). Linguistic ability and early language exposure. Nature, 417 (6884), 38. DOI logoGoogle Scholar
McNally, R. J. (2016). The legacy of Seligman’s “Phobias and Preparedness” (1971). Behavior Therapy, 47 1, 585–594. DOI logoGoogle Scholar
Newport, E. L. (1990). Maturational constraints on language learning. Cognitive Science, 14 (1), 11–28. DOI logoGoogle Scholar
O’Grady, W. (2008). The emergentist program. Lingua, 118 1, 447–464. DOI logoGoogle Scholar
Öhman, A., & Menika, S. (2001). Fears, phobias and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108 (3), 483–522. DOI logoGoogle Scholar
Paixáo-Côrtez, V. R., Vicardi, L. H., Salzano, F. M., Hunemeier, T., & Bortolini, M. C. (2012). Homo sapiens, Homo neanderthalensis and the Denisova specimen: New insights on their evolutionary histories using whole-genome comparisons. Genetics and Molecular Biology, 35 (4), 904–911. DOI logoGoogle Scholar
Partanen, E., Kujala, T., Näätänen, R., Liitola, A., Sambeth, A., & Huotilainen, M. (2013). Learning-induced neural plasticity of speech processing before birth. Proceedings of the National Academy of Sciences of the United States of America, 110 (37), 15145–15150. DOI logoGoogle Scholar
Pinker, S. (1991). Rules of language. Science, 253 (5019), 530–535. DOI logoGoogle Scholar
(1994). The Language Instinct: The New Science of Language and Mind. London: Penguin Books.Google Scholar
Pinker, S. & Bloom, P. (1990). Natural language and natural selection. Behavioral and Brain Sciences, 13 1, 707–784. DOI logoGoogle Scholar
Pinker, S. & R. Jackendoff. (2005). The faculty of language: What’s special about it? Cognition, 95 1, 201–236. DOI logoGoogle Scholar
Pinker, S., & Ullman, M. T. (2002). The past and future of the past tense. Trends in Cognitive Sciences, 6 (11), 456–463. DOI logoGoogle Scholar
Pleyer, M., & Hartmann, S. (2019). Constructing a consensus on language evolution? Convergences and differences between biolinguistics and usage-based approaches. Frontiers in Psychology, 10 1, article 2537. DOI logoGoogle Scholar
Ramonda, K. (2014). Goldberg’s construction grammar. In J. Littlemore & R. R. Taylor (eds.), The Bloomsbury companion to cognitive linguistics, 60–71. London & New York: Bloomsbury Academic. DOI logoGoogle Scholar
Reich, D., Green, R. E., Kirchner, M., Krause, J., Patterson, N., Durand, E. Y., … Pääbo, S. (2010). Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468 (7327), 1053–1060. DOI logoGoogle Scholar
Richerson, P. J. & Boyd, R. (2010). Why possibly language evolved. Biolinguistics 4 1, 289–306. DOI logoGoogle Scholar
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274 (5294), 1926–1928. DOI logoGoogle Scholar
Sapolsky, R. (2017). Behave. The Biology of Humans at Our Best and Worst. London: Penguin Books.Google Scholar
Seligman, M. E. (1970). On the generality of the laws of learning. Psychological Review, 77 (5), 406–418. DOI logoGoogle Scholar
(1971). Phobias and preparedness. Behavior Therapy, 2 (3), 307–320. DOI logoGoogle Scholar
Simoons, F. J. (1969). Primary adult lactose intolerance and the milking habit: A problem in biologic and cultural interrelations: I. Review of the medical research. The American Journal of Digestive Diseases, 14 (12), 819–836. DOI logoGoogle Scholar
(1970). Primary adult lactose intolerance and the milking habit: a problem in biologic and cultural interrelations: II. A culture historical hypothesis. The American Journal of Digestive Diseases, 15 (8), 695–710. DOI logoGoogle Scholar
Stahl, B., & Van Lancker Sidtis, D. (2015). Tapping into neural resources o communication: Formulaic language in aphasia therapy. Frontiers in Psychology, 8 1, article 1526. DOI logoGoogle Scholar
Thagart, P. & Stewart, T. C. (2014). Two theories of consciousness: Semantic pointer competition vs. information integration. Consciousness and Cognition, 30 1, 73–90. DOI logoGoogle Scholar
Vyshedskiy, A., Mahapatra, S., & Dunn, R. (2017). Linguistically deprived children: Meta-analysis of published research underlines the importance of early syntactic language use for normal brain development. Research Ideas and Outcomes, 3 1, article e20696. DOI logoGoogle Scholar
Wilson, P. D., & Riesen, A. H. (1966). Visual development in rhesus monkeys neonatally deprived of patterned light. Journal of Comparative and Physiological Psychology, 61 (1), 87–95. DOI logoGoogle Scholar
Wong, P. C. M., Chandrasekaran, B., & Zheng, J. (2012). The derived allele of ASPM is associated with lexical tone perception. PLOS ONE, 7 (4), article e34243. DOI logoGoogle Scholar
Wong, P. C. M., Kang, X., Wong, K. H. Y., So, H.-C., Choy, K. W., & Geng, X. (2020). ASPM-lexical tone association in speakers of a tone language: direct evidence for the genetic-biasing hypothesis of language evolution. Science Advances, 6 (22), article 1824. DOI logoGoogle Scholar