Article published In:
The Unit of Processing in Chinese
Edited by Tianlin Wang
[International Journal of Chinese Linguistics 11:1] 2024
► pp. 94109
Arnon, I., & Priva, U. C.
(2013) More than words: The effect of multi-word frequency and constituency on phonetic duration. Lang. Speech, 56 (Pt 3), 349–371. DOI logoGoogle Scholar
Baker, A.
(2022) Simplicity. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Summer 2022). [URL]; Metaphysics Research Lab, Stanford University.
Beinborn, L., & Pinter, Y.
(2023) Analyzing cognitive plausibility of subword tokenization. In H. Bouamor, J. Pino, & K. Bali (Eds.), Proceedings of the 2023 conference on empirical methods in natural language processing (pp. 4478–4486). Association for Computational Linguistics. DOI logoGoogle Scholar
Brugnara, F., Falavigna, D., & Omologo, M.
(1993) Automatic segmentation and labeling of speech based on hidden markov models. Speech Commun., 12 (4), 357–370. DOI logoGoogle Scholar
Chater, N.
(1999) The search for simplicity: A fundamental cognitive principle? Q. J. Exp. Psychol. A, 52A (2), 273–302. DOI logoGoogle Scholar
Chater, N., & Vitányi, P.
(2003) Simplicity: A unifying principle in cognitive science? Trends Cogn. Sci., 7 (1), 19–22. DOI logoGoogle Scholar
Delétang, G., Ruoss, A., Duquenne, P.-A., Catt, E., Genewein, T., Mattern, C., Grau-Moya, J., Wenliang, L. K., Aitchison, M., Orseau, L., Hutter, M., & Veness, J.
(2023) Language modeling is compression. [URL]
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K.
(2019) BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186. DOI logoGoogle Scholar
Feldman, J.
(2016) The simplicity principle in perception and cognition. Wiley Interdiscip. Rev. Cogn. Sci., 7 (5), 330–340. DOI logoGoogle Scholar
Gage, P.
(1994) A new algorithm for data compression. The C Users Journal Archive. [URL]
Goldwater, S., Griffiths, T. L., & Johnson, M.
(2009) A bayesian framework for word segmentation: Exploring the effects of context. Cognition, 112 (1), 21–54. DOI logoGoogle Scholar
Gruver, N., Finzi, M., Qiu, S., & Wilson, A. G.
(2023) Large language models are Zero-Shot time series forecasters. [URL]
Isbilen, E. S., & Christiansen, M. H.
(2020) Chunk-Based memory constraints on the cultural evolution of language. Top. Cogn. Sci., 12 (2), 713–726. DOI logoGoogle Scholar
Isbilen, E. S., McCauley, S. M., Kidd, E., & Christiansen, M. H.
(2020) Statistically induced chunking recall: A Memory-Based approach to statistical learning. Cogn. Sci., 44 (7), e12848. DOI logoGoogle Scholar
Kudo, T.
(2018) Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates. In I. Gurevych & Y. Miyao (Eds.), Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 66–75). Association for Computational Linguistics. DOI logoGoogle Scholar
Kudo, T., & Richardson, J.
(2018) SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, 66–71. DOI logoGoogle Scholar
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R.
(2020, February 8). ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. DOI logoGoogle Scholar
Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P.
(1998) Gradient-based learning applied to document recognition. Proc. IEEE, 86 (11), 2278–2324. DOI logoGoogle Scholar
Lieber, O., Sharir, O., Lenz, B., & Shoham, Y.
(2021) Jurassic-1: Technical details and evaluation. White Paper. AI21 Labs, 1 1.Google Scholar
Meltzoff, A. N., Kuhl, P. K., Movellan, J., & Sejnowski, T. J.
(2009) Foundations for a new science of learning. Science, 325 (5938), 284–288. DOI logoGoogle Scholar
Mikolov, T., Chen, K., Corrado, G., & Dean, J.
(2013) Efficient estimation of word representations in vector space. [URL]
Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R.
(2022, March 4). Training language models to follow instructions with human feedback. DOI logoGoogle Scholar
Pennington, J., Socher, R., & Manning, C. D.
(2014) GloVe: Global vectors for word representation. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 1532–1543. DOI logoGoogle Scholar
Perruchet, P., & Vinter, A.
(1998) PARSER: A model for word segmentation. J. Mem. Lang., 39 (2), 246–263. DOI logoGoogle Scholar
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., & Liu, P. J.
(2019) Exploring the limits of transfer learning with a unified Text-to-Text transformer. [URL]
Rissanen, J.
(1978) Modeling by shortest data description. Automatica, 14 (5), 465–471. DOI logoGoogle Scholar
Ruoss, A., Delétang, G., Genewein, T., Grau-Moya, J., Csordás, R., Bennani, M., Legg, S., & Veness, J.
(2023) Randomized positional encodings boost length generalization of transformers. [URL]. DOI logo
Schapiro, A. C., Turk-Browne, N. B., Norman, K. A., & Botvinick, M. M.
(2016) Statistical learning of temporal community structure in the hippocampus. Hippocampus, 26 (1), 3–8. DOI logoGoogle Scholar
Schuster, M., & Nakajima, K.
(2012) Japanese and Korean voice search. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5149–5152. DOI logoGoogle Scholar
Sennrich, R., Haddow, B., & Birch, A.
(2016) Neural machine translation of rare words with subword units. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1715–1725. DOI logoGoogle Scholar
Sun, Y., Wang, S., Li, Y., Feng, S., Chen, X., Zhang, H., Tian, X., Zhu, D., Tian, H., & Wu, H.
(2019, April 19). ERNIE: Enhanced Representation through Knowledge Integration. DOI logoGoogle Scholar
Tian, Y., James, I., & Son, H.
(2023) How Are Idioms Processed Inside Transformer Language Models? In A. Palmer & J. Camacho-collados (Eds.), Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023) (pp. 174–179). Association for Computational Linguistics. DOI logoGoogle Scholar
Yang, J.
(2022) Discovering the units in language cognition: From empirical evidence to a computational model [PhD thesis, Radboud University & Max Planck Institute for Psycholinguistics]. DOI logo
Yang, J., Cai, Q., & Tian, X.
(2020) How do we segment text? Two-stage chunking operation in reading. eNeuro, 7 (3). DOI logoGoogle Scholar
Yang, J., Frank, S. L., & van den Bosch, A.
(2020) Less is Better: A cognitively inspired unsupervised model for language segmentation. Proceedings of the Workshop on the Cognitive Aspects of the Lexicon, 33–45. [URL]
Yang, J., van den Bosch, A., & Frank, S. L.
(2022) Unsupervised text segmentation predicts eye fixations during reading. Frontiers in Artificial Intelligence, 5 1. DOI logoGoogle Scholar
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V.
(2020, January 2). XLNet: Generalized Autoregressive Pretraining for Language Understanding. DOI logoGoogle Scholar
Zipf, G. K.
(1949) Human behavior and the principle of least effort (Vol. 5731). Addison-Wesley Press. [URL]