Article published In:
How the Brain Got Language: Towards a New Road Map
Edited by Michael A. Arbib
[Interaction Studies 19:1/2] 2018
► pp. 2237
References
Aboitiz, F.
(2012) Gestures, vocalizations and memory in language origins. Frontiers in Evolutionary Neuroscience, 4(2). DOI logo.Google Scholar
(2013) How did vocal behavior “take over” the gestural communication system? Language and Cognition, 51, 167–176. DOI logoGoogle Scholar
Arbib, M. A.
(2012) How the Brain Got Language: The Mirror System Hypothesis. New York & Oxford: Oxford University Press. DOI logoGoogle Scholar
(2013) Complex Imitation and the Language-Ready Brain. Language and Cognition, 5(2–3), 273–312. DOI logoGoogle Scholar
(2016) Towards a Computational Comparative Neuroprimatology: Framing the Language-Ready Brain. Physics of Life Reviews, 161, 1–54. DOI logoGoogle Scholar
(2017) Dorsal and ventral streams in the evolution of the language-ready brain: Linking language to the world. Journal of Neurolinguistics, 431, Part B, 228–253. DOI logo.Google Scholar
Arbib, M. A. & Bonaiuto, J. J.
(eds) (2016) From Neuron to Cognition via Computational Neuroscience. Cambridge, MA: The MIT Press.Google Scholar
Arbib, M. A. & Caplan, D.
(1979) Neurolinguistics must be Computational. Behavioral and Brain Sciences, 21, 449–483. DOI logoGoogle Scholar
Arbib, M. A., Ganesh, V. & Gasser, B.
(2014a) Dyadic Brain Modeling, Ontogenetic Ritualization of Gesture in Apes, and the Contributions of Primate Mirror Neuron Systems. Phil Trans Roy Soc B, 369 (1644), 20130414. DOI logoGoogle Scholar
Arbib, M. A., Gasser, B. & Barrès, V.
(2014b) Language is handy but is it embodied? Neuropsychologia, 551, 57–70. DOI logoGoogle Scholar
Arbib, M. A. & Lee, J. Y.
(2008) Describing visual scenes: Towards a neurolinguistics based on construction grammar. Brain Research, 12251, 146–162. DOI logoGoogle Scholar
(2009) Template Construction Grammar and the Description of Visual Scenes. The Neurobiology of Language Conference, Chicago.Google Scholar
Arbib, M. A. & Liaw, J. -S.
(1995) Sensorimotor Transformations in the Worlds of Frogs and Robots. Artificial Intelligence, 721, 53–79. DOI logoGoogle Scholar
Baker, M.
(2001) The Atoms of Language: The Mind’s Hidden Rules of Grammar. New York: Basic Books.Google Scholar
Barrès, V. & Arbib, M. A.
(2018a) From Gaze Patterns to Utterances: Modeling the Dynamics of Visual Scene Description. Cognitive Science, In preparation.Google Scholar
(2018b) SALVIA: A Neuro-Cognitive Model of Normal and Agrammatic Language Comprehension. Brain and Language, In preparation.Google Scholar
Barrès, V. & Lee, J. Y.
(2014) Template Construction Grammar: From Visual Scene Description to Language Comprehension and Agrammatism. Neuroinformatics, 12(1), 181–208. DOI logoGoogle Scholar
Behrmann, M. & Plaut, D. C.
(2013) Distributed circuits, not circumscribed centers, mediate visual recognition. Trends in Cognitive Sciences, 17(5), 210–219. DOI logoGoogle Scholar
Berwick, R. C. & Chomsky, N.
(2016) Why only us: Language and Evolution, Cambridge, MA: The MIT Press. DOI logoGoogle Scholar
Bickerton, D.
(1995) Language and Human Behavior. Seattle: University of Washington Press.Google Scholar
(2009) Adam’s Tongue. How Humans Made Language, How Language Made Humans. New York: Hill & Wang.Google Scholar
Bornkessel-Schlesewsky, I. & Schlesewsky, M.
(2013) Reconciling time, space and function: A new dorsal–ventral stream model of sentence comprehension. Brain Lang, 125(1), 60–76. DOI logoGoogle Scholar
Cangelosi, A. & Parisi, D.
(eds) (2002) Simulating the Evolution of Language. London: Springer. DOI logoGoogle Scholar
Caramazza, A. & Zurif, E. B.
(1976) Dissociation of algorithmic and heuristic processes in language comprehension: Evidence from aphasia. Brain and Language, 3(4), 572–582. DOI logoGoogle Scholar
Chang, F.
(2015) The role of learning in theories of English and Japanese sentence processing, in Nakyama, M. (ed), Handbook of Japanese psycholinguistics. Boston: De Gruyter Mouton, 353–385. DOI logoGoogle Scholar
Colagé, I.
(2016) The Cultural Evolution of Language and Brain: Comment on “Towards a computational comparative neuroprimatology: Framing the language-ready brain” by M.A. Arbib. Physics of Life Reviews, 161, 61–62. DOI logoGoogle Scholar
Dehaene, S. & Cohen, L.
(2011) The unique role of the visual word form area in reading. TRENDS in Cognitive Sciences, 15(6), 254–262. DOI logoGoogle Scholar
Draper, B. A., Collins, R. T., Brolio, J., Hanson, A. R. & Riseman, E. M.
(1989) The schema system. International Journal of Computer Vision, 21, 209–250. DOI logoGoogle Scholar
Fagg, A. H. & Arbib, M. A.
(1998) Modeling parietal-premotor interactions in primate control of grasping. Neural Netw, 11(7–8), 1277–1303. DOI logoGoogle Scholar
Fogassi, L., Coudé, G. & Ferrari, P. F.
(2013) The extended features of mirror neurons and the voluntary control of vocalization in the pathway to language. Language and Cognition, 51, 145–155. DOI logoGoogle Scholar
Friederici, A. D.
(2011) The brain basis of language processing: from structure to function. Physiological Reviews, 91(4), 1357–1392. DOI logoGoogle Scholar
Hagoort, P.
(2013) MUC (Memory, Unification, Control) and beyond. Frontiers in Psychology, 41. DOI logo.Google Scholar
Hecht, E. E., Gutman, D. A., Bradley, B. A., Preuss, T. M. & Stout, D.
(2015) Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans. Neuroimage, 1081, 124–137. DOI logoGoogle Scholar
Hickok, G. & Poeppel, D.
(2007) The cortical organization of speech processing. Nat Rev Neurosci, 8(5), 393–402. DOI logoGoogle Scholar
Hill, J. C.
(1983) A computational model of language acquisition in the two-year-old. Cognition and Brain Theory, 61, 287–317.Google Scholar
Kirby, S.
(2000) Syntax without natural selection: How compositionality emerges from vocabulary in a population of learners, in Knight, C., Studdert-Kennedy, M. & Hurford, J. R. (eds), The evolutionary emergence of language. Cambridge: Cambridge University Press, 99–119. DOI logoGoogle Scholar
Kirby, S., Cornish, H. & Smith, K.
(2008) Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language. Proceedings of the National Academy of Sciences, 105(31), 10681–10686. DOI logoGoogle Scholar
Lightfoot, D. W.
(2006) How New Languages Emerge. Cambridge: Cambridge University Press. DOI logoGoogle Scholar
MacWhinney, B.
(1987) The Competition Model, in MacWhinney, B. (ed), Mechanisms of language acquisition. Hillsdale, NJ: Lawrence Erlbaum, 249–308.Google Scholar
(2005) A unified model of language development, in Kroll, J. F. & Groot, A. M. B. D. (eds), Handbook of bilingualism: Psycholinguistic approaches. Oxford: Oxford University Press, 49–67.Google Scholar
(2014) Item-based patterns in early syntactic development, in Herbst, T., Schmid, H. -J. & Faulhaber, S. (eds), Constructions Collocations Patterns Walter de Gruyter, 33–69.Google Scholar
Menenti, L., Gierhan, S. M. E., Segaert, K. & Hagoort, P.
(2011) Shared Language Overlap and Segregation of the Neuronal Infrastructure for Speaking and Listening Revealed by Functional MRI. Psychological Science, 22(9), 1173–1182. DOI logoGoogle Scholar
Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X. & Behrens, T. E.
(2008) The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11(4), 426–428. DOI logoGoogle Scholar
Sandler, W., Aronoff, M., Meir, I. & Padden, C.
(2011) The gradual emergence of phonological form in a new language. Natural Language & Linguistic Theory. DOI logo.Google Scholar
Segaert, K., Menenti, L., Weber, K., Petersson, K. M. & Hagoort, P.
(2012) Shared Syntax in Language Production and Language Comprehension – An fMRI Study. Cerebral Cortex, 22(7), 1662–1670. DOI logoGoogle Scholar
Steels, L.
(2011) Modeling the cultural evolution of language. Physics of Life Reviews, 8(4), 339–356. DOI logoGoogle Scholar
Wray, A.
(1998) Protolanguage as a holistic system for social interaction. Language & Communication, 181, 47–67. DOI logoGoogle Scholar
Cited by

Cited by 5 other publications

Arbib, Michael A.
2018. Computational challenges of evolving the language-ready brain. Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems 19:1-2  pp. 7 ff. DOI logo
Arbib, Michael A.
2020. Computational challenges of evolving the language-ready brain. In How the Brain Got Language – Towards a New Road Map [Benjamins Current Topics, 112],  pp. 7 ff. DOI logo
Arbib, Michael A., Francisco Aboitiz, Judith M. Burkart, Michael Corballis, Gino Coudé, Erin Hecht, Katja Liebal, Masako Myowa-Yamakoshi, James Pustejovsky, Shelby Putt, Federico Rossano, Anne E. Russon, P. Thomas Schoenemann, Uwe Seifert, Katerina Semendeferi, Chris Sinha, Dietrich Stout, Virginia Volterra, Sławomir Wacewicz & Benjamin Wilson
2018. The comparative neuroprimatology 2018 (CNP-2018) road map for research on How the Brain Got Language . Interaction Studies. Social Behaviour and Communication in Biological and Artificial Systems 19:1-2  pp. 370 ff. DOI logo
Arbib, Michael A., Francisco Aboitiz, Judith M. Burkart, Michael C. Corballis, Gino Coudé, Erin Hecht, Katja Liebal, Masako Myowa-Yamakoshi, James Pustejovsky, Shelby S. Putt, Federico Rossano, Anne E. Russon, P. Thomas Schoenemann, Uwe Seifert, Katerina Semendeferi, Chris Sinha, Dietrich Stout, Virginia Volterra, Sławomir Wacewicz & Benjamin Wilson
2020. The comparative neuroprimatology 2018 (CNP-2018) road map for research on How the Brain Got Language. In How the Brain Got Language – Towards a New Road Map [Benjamins Current Topics, 112],  pp. 370 ff. DOI logo
Gong, Tao, Lan Shuai & Yicheng Wu
2018. Extending research on language foundations and evolution. Physics of Life Reviews 26-27  pp. 184 ff. DOI logo

This list is based on CrossRef data as of 1 june 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers. Any errors therein should be reported to them.