References (102)
References
1000 Genomes Project Consortium, Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M., Handsaker, R.E., Kang, H.M., Marth, G.T. & McVean, G.A. 2012. An integrated map of genetic variation from 1,092 human genomes. Nature 491(7422): 56–65. DOI logoGoogle Scholar
Abecasis, G.R., Cardon, L.R. & Cookson, W.O. 2000. A general test of association for quantitative traits in nuclear families. Am J Hum Genet 66(1): 279–292. DOI logoGoogle Scholar
Abrahams, B.S., Tentler, D., Perederiy, J.V., Oldham, M.C., Coppola, G. & Geschwind, D.H. 2007. Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc Natl Acad Sci U S A. 6;104(45): 17849–17854. DOI logoGoogle Scholar
Abreu, P.C., Greenberg, D.A. & Hodge, S.E. 1999. Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases. Am J Hum Genet 65(3): 847–857. DOI logoGoogle Scholar
Autism Genome Project Consortium, Szatmari, P., Paterson, A.D., Zwaigenbaum, L., Roberts, W., Brian, J., Liu, X.Q., Vincent, J.B., Skaug, J.L., Thompson, A.P., Senman, L., Feuk, L., Qian, C., Bryson, S.E., Jones, M.B., Marshall, C.R., Scherer, S.W., Vieland V.J., Bartlett, C., Mangin, L.V., Goedken, R., Segre, A., Pericak-Vance, M.A., Cuccaro, M.L., Gilbert, J.R., Wright, H.H., Abramson, R.K., Betancur, C., Bourgeron, T., Gillberg, C., Leboyer, M., Buxbaum, J.D., Davis, K.L., Hollander, E., Silverman, J.M., Hallmayer, J., Lotspeich, L., Sutcliffe, J.S., Haines, J.L., Folstein, S.E., Piven, J., Wassink, T.H., Sheffield, V., Geschwind, D.H., Bucan, M., Brown, W.T., Cantor, R.M., Constantino, J.N., Gilliam, T.C., Herbert, M., Lajonchere, C., Ledbetter, D.H., Lese-Martin, C., Miller, J., Nelson, S., Samango-Sprouse, C.A., Spence, S., State, M., Tanzi, R.E., Coon, H., Dawson, G., Devlin, B., Estes, A., Flodman, P., Klei, L., McMahon, W.M., Minshew, N., Munson, J., Korvatska, E., Rodier, P.M., Schellenberg, G.D., Smith, M., Spence, M.A., Stodgell, C., Tepper, P.G., Wijsman, E.M., Yu, C.E., Rogé, B., Mantoulan, C., Wittemeyer, K., Poustka, A., Felder, B., Klauck, S.M., Schuster, C., Poustka, F., Bölte, S., Feineis-Matthews, S., Herbrecht, E., Schmötzer, G., Tsiantis, J., Papanikolaou, K., Maestrini, E., Bacchelli, E., Blasi, F., Carone, S., Toma, C., Van Engeland, H., de Jonge, M., Kemner, C., Koop, F., Langemeijer, M., Hijmans, C., Staal, W.G., Baird, G., Bolton, P.F., Rutter, M.L., Weisblatt, E., Green, J., Aldred, C., Wilkinson, J.A., Pickles, A., Le Couteur, A., Berney, T., McConachie, H., Bailey, A.J., Francis, K., Honeyman, G., Hutchinson, A., Parr, J.R., Wallace, S., Monaco, A.P., Barnby, G., Kobayashi, K., Lamb, J.A., Sousa, I., Sykes, N., Cook, E.H., Guter, S.J., Leventhal, B.L., Salt, J., Lord, C., Corsello, C., Hus, V., Weeks, D.E., Volkmar, F., Tauber, M., Fombonne, E., Shih, A. & Meyer, K.J. 2007. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 39(3): 319–328. DOI logoGoogle Scholar
Alarcón, M., Cantor, R.M., Liu, J., Gilliam, T.C., Geschwind, D.HAutism Genetic Research Exchange Consortium.; . 2002. Evidence for a language quantitative trait locus on chromosome 7q in multiplex autism families. Am J Hum Genet 70(1): 60–71. DOI logoGoogle Scholar
Alarcón, M., Abrahams, B.S., Stone, J.L., Duvall, J.A., Perederiy, J.V., Bomar, J.M., Sebat, J., Wigler, M., Martin, C.L., Ledbetter, D.H., Nelson, S.F., Cantor, R.M. & Geschwind, D.H. 2008. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 82(1):150–159. DOI logoGoogle Scholar
American Psychiatric Association. 2000. Diagnostic and Statistical Manual of Mental Disorders, 4th edn, revised. Washington DC: American Psychiatric Press.Google Scholar
Anney, R., Klei, L., Pinto, D., Regan, R., Conroy, J., Magalhaes, T.R., Correia, C., Abrahams, B.S., Sykes, N., Pagnamenta, A.T., Almeida, J., Bacchelli, E., Bailey, A.J., Baird, G., Battaglia, A., Berney, T., Bolshakova, N., Bölte, S., Bolton, P.F., Bourgeron, T., Brennan, S., Brian, J., Carson, A.R., Casallo, G., Casey, J., Chu, S.H., Cochrane, L., Corsello, C., Crawford, E.L., Crossett, A., Dawson, G., de Jonge, M., Delorme, R., Drmic, I., Duketis, E., Duque, F., Estes, A., Farrar, P., Fernandez, B.A., Folstein, S.E., Fombonne, E., Freitag, C.M., Gilbert, J., Gillberg, C., Glessner, J.T., Goldberg, J., Green, J., Guter, S.J., Hakonarson, H., Heron, E.A., Hill, M., Holt, R., Howe, J.L., Hughes, G., Hus, V., Igliozzi, R., Kim, C., Klauck, S.M., Kolevzon, A., Korvatska, O., Kustanovich, V., Lajonchere, C.M., Lamb, J.A., Laskawiec, M., Leboyer, M., Le Couteur, A., Leventhal, B.L., Lionel, A.C., Liu, X.Q., Lord, C., Lotspeich, L., Lund, S.C., Maestrini, E., Mahoney, W., Mantoulan, C., Marshall, C.R., McConachie, H., McDougle, C.J., McGrath, J., McMahon, W.M., Melhem, N.M., Merikangas, A., Migita, O., Minshew, N.J., Mirza, G.K., Munson, J., Nelson, S.F., Noakes, C., Noor, A., Nygren, G., Oliveira, G., Papanikolaou, K., Parr, J.R., Parrini, B., Paton, T., Pickles, A., Piven, J., Posey, D.J., Poustka, A., Poustka, F., Prasad, A., Ragoussis, J., Renshaw, K., Rickaby, J., Roberts, W., Roeder, K., Roge, B., Rutter, M.L., Bierut, L.J., Rice, J.P., Salt, J., Sansom, K., Sato, D., Segurado, R., Senman, L., Shah, N., Sheffield, V.C., Soorya, L., Sousa, I., Stoppioni, V., Strawbridge, C., Tancredi, R., Tansey, K., Thiruvahindrapduram, B., Thompson, A.P., Thomson, S., Tryfon, A., Tsiantis, J., Van Engeland, H., Vincent, J.B., Volkmar, F., Wallace, S., Wang, K., Wang, Z., Wassink, T.H., Wing, K., Wittemeyer, K., Wood, S., Yaspan, B.L., Zurawiecki, D., Zwaigenbaum, L., Betancur, C., Buxbaum, J.D., Cantor, R.M., Cook, E.H., Coon, H., Cuccaro, M.L., Gallagher, L., Geschwind, D.H., Gill, M., Haines, J.L., Miller, J., Monaco, A.P., Nurnberger, J.I. Jr, Paterson, A.D., Pericak-Vance, M.A., Schellenberg, G.D., Scherer, S.W., Sutcliffe, J.S., Szatmari, P., Vicente, A.M., Vieland, V.J., Wijsman, E.M., Devlin, B. & Ennis, S. & Hallmayer J. 2010. A genome-wide scan for common alleles affecting risk for autism. Hum Mol Genet 19(20): 4072–4082. DOI logoGoogle Scholar
Bacon, C. & Rappold, G.A. 2012. The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Hum Genet 131(11): 1687–1698. DOI logoGoogle Scholar
Bakkaloglu, B., O’Roak, B.J., Louvi, A., Gupta, A.R., Abelson, J.F., Morgan, T.M., Chawarska, K., Klin, A., Ercan-Sencicek, A.G., Stillman, A.A., Tanriover, G., Abrahams, B.S., Duvall, J.A., Robbins, E.M., Geschwind, D.H., Biederer, T., Gunel, M., Lifton, R.P. & State, M.W. 2008. Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders. Am J Hum Genet 82(1): 165–173. DOI logoGoogle Scholar
Barkley, R.A. 1997. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121(1): 65–94. DOI logoGoogle Scholar
Bartlett, C.W., Flax, J.F., Logue, M.W., Vieland, V.J., Bassett, A.S., Tallal, P. & Brzustowicz, L.M. 2002. A major susceptibility locus for specific language impairment is located on 13q21. Am J Hum Genet 71(1): 45–55. DOI logoGoogle Scholar
Bartlett, C.W., Flax, J.F., Logue, M.W., Smith, B.J., Vieland, V.J., Tallal, P. & Brzustowicz, L.M. 2004. Examination of potential overlap in autism and language loci on chromosomes 2, 7, and 13 in two independent samples ascertained for specific language impairment. Hum Hered 57(1): 10–20. DOI logoGoogle Scholar
Bishop, D.V. 2003. Autism and specific language impairment: Categorical distinction or continuum? Novartis Foundation Symposium 251: 213–226. DOI logoGoogle Scholar
Bishop, D.V. & Snowling, M.J. 2004 Developmental dyslexia and specific language impairment: Same or different? Psychol Bull 130(6): 858–886. DOI logoGoogle Scholar
Bishop, D.V. 2006. What causes specific language impairment in children? Curr Dir Psychol Sci 15(5): 217–221. DOI logoGoogle Scholar
Bradford, Y., Haines, J., Hutcheson, H., Gardiner, M., Braun, T., Sheffield, V., Cassavant, T., Huang, W., Wang, K., Vieland, V., Folstein, S., Santangelo, S. & Piven, J. 2001. Incorporating language phenotypes strengthens evidence of linkage to autism. Am J Med Genet 105(8): 539–547. DOI logoGoogle Scholar
Brzustowicz, L.M., Hodgkinson, K.A., Chow, E.W., Honer, W.G. & Bassett, A.S. 2000. Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. Science 288(5466): 678–682. DOI logoGoogle Scholar
Buxbaum, J.D., Silverman, J.M., Smith, C.J., Kilifarski, M., Reichert, J., Hollander, E., Lawlor, B.A., Fitzgerald, M., Greenberg, D.A. & Davis, K.L. 2001. Evidence for a susceptibility gene for autism on chromosome 2 and for genetic heterogeneity. Am J Hum Genet 68(6): 1514–1520. DOI logoGoogle Scholar
Ceroni, F., Simpson, N.H., Francks, C., Baird, G., Conti-Ramsden, G., Clark, A., Bolton, P.F., Hennessy, E.R., Donnelly, P., Bentley, D.R., Martin, H., IMGSAC, SLI Consortium, WGS500 Consortium, Parr, J., Pagnamenta, A.T., Maestrini, E., Bacchelli, E., Fisher, S.E. & Newbury, D.F. 2014. Homozygous microdeletion of exon 5 in ZNF277 in a girl with specific language impairment. Eur J Hum Genet 22(10): 1165–1171. DOI logoGoogle Scholar
Cohen, N.J., Vallance, D.D., Barwick, M., Im, N., Menna, R., Horodezky, N.B. & Isaacson, L. 2000. The interface between ADHD and language impairment: an examination of language, achievement, and cognitive processing. J Child Psychol Psychiatry 41(3): 353–362. DOI logoGoogle Scholar
Cook, E.H. Jr. & Scherer, S.W. 2008. Copy-number variations associated with neuropsychiatric conditions. Nature 455(7215): 919–923. DOI logoGoogle Scholar
DeFries, J.C. & Fulker, D.W. 1985. Multiple regression analysis of twin data. Behav Genet 15(5): 467–473. DOI logoGoogle Scholar
Devlin, B. & Scherer, S.W. 2012. Genetic architecture in autism spectrum disorder. Curr Opin Genet Dev 22(3): 229–237. DOI logoGoogle Scholar
Eicher, J.D., Powers, N.R., Miller, L.L., Akshoomoff, N., Amaral, D.G., Bloss, C.S., Libiger, O., Schork, N.J., Darst, B.F., Casey, B.J., Chang, L., Ernst, T., Frazier, J., Kaufmann, W.E., Keating, B., Kenet, T., Kennedy, D., Mostofsky, S., Murray, S.S., Sowell, E.R., Bartsch, H., Kuperman, J.M., Brown, T.T., Hagler, D.J., Jr., Dale, A.M., Jernigan, T.L., Pourcain, B.S., Davey Smith, G., Ring, S.M., Gruen, J.RPediatric Imaging, Neurocognition, and Genetics Study.; . 2013. Genome-wide association study of shared components of reading disability and language impairment. Genes Brain Behav 12(8): 792–801. DOI logoGoogle Scholar
Elia, J., Gai, X., Xie, H.M., Perin, J.C., Geiger, E., Glessner, J.T., D’arcy, M., deBerardinis, R., Frackelton, E., Kim, C., Lantieri, F., Muganga, B.M., Wang, L., Takeda, T., Rappaport, E.F., Grant, S.F., Berrettini, W., Devoto, M., Shaikh T.H., Hakonarson, H. & White, P.S. 2010. Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes. Mol Psychiatry 15(6): 637–646. DOI logoGoogle Scholar
Ewens, W.J., Li, M., Spielman, R.S. 2008. A review of family-based tests for linkage disequilibrium between a quantitative trait and a genetic marker. PLoS Genet 4(9): e1000180. DOI logoGoogle Scholar
Falcaro, M., Pickles, A., Newbury, D.F., Addis, L., Banfield, E., Fisher, S.E., Monaco, A.P., Simkin, Z., Conti-Ramsden, GSLI Consortium.; 2008. Genetic and phenotypic effects of phonological short-term memory and grammatical morphology in specific language impairment. Genes Brain Behav 7(4): 393–402. DOI logoGoogle Scholar
Fisher, S.E. & Scharff, C. 2009. FOXP2 as a molecular window into speech and language. Trends Genet 25(4): 166–177. DOI logoGoogle Scholar
Friedman, J.I., Vrijenhoek, T., Markx, S., Janssen, I.M., van der Vliet, W.A., Faas, B.H., Knoers, N.V., Cahn, W., Kahn, R.S., Edelmann, L., Davis, K.L., Silverman, J.M., Brunner, H.G., van Kessel, A.G., Wijmenga, C., Ophoff, R.A. & Veltman, J.A. 2008. CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Mol Psychiatry 13(3): 261–266. DOI logoGoogle Scholar
Fulker, D.W., Cardon, L.R., DeFries, J.C., Kimberling, W.J., Pennington, B.F. & Smith, S.D. 1991. Multiple regression analysis of sib-pair data on reading to detect quantitative trait loci. Reading Writing Interdiscip J 3(3): 299–313. DOI logoGoogle Scholar
Gehman, L.T., Meera, P., Stoilov, P., Shiue, L., O’Brien, J.E., Meisler, M.H., Ares, M. Jr., Otis, T.S. & Black, D.L. 2012. The splicing regulator Rbfox2 is required for both cerebellar development and mature motor function. Genes Dev 26(5): 445–460. DOI logoGoogle Scholar
Gialluisi, A., Newbury, D.F., Wilcutt, E.G., Olson, R.K., DeFries, J.C., Brandler, W.M., Pennington, B.F., Smith, S.D., Scerri, T.S., Simpson, N.H., SLI Consortium, Luciano, M., Evans, D.M., Bates, T.C., Stein, J.F., Talcott, J.B., Monaco, A.P., Paracchini, S., Francks, C. & Fisher, S.E. 2014. Genome-wide screening for DNA variants associated with reading and language traits. Genes Brain Behav 13(7): 686–701. DOI logoGoogle Scholar
Glatt, S.J., Stone, W.S., Nossova, N., Liew, C.C., Seidman, L.J. & Tsuang, M.T. 2011. Similarities and differences in peripheral blood gene-expression signatures of individuals with schizophrenia and their first-degree biological relatives. Am J Med Genet B Neuropsychiatr Genet 156B: 869–887. DOI logoGoogle Scholar
Greenberg, D.A., Abreu, P. & Hodge, S.E. 1998. The power to detect linkage in complex disease by means of simple LOD-score analyses. Am J Hum Genet 63(3): 870–879. DOI logoGoogle Scholar
Haseman, J.K. & Elston, R.C.1972. The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 2(1): 3–19. DOI logoGoogle Scholar
International Molecular Genetic Study of Autism Consortium (IMGSAC). 1998. A full genome screen for autism with evidence for linkage to a region on chromosome 7q. Hum Mol Genet 7(3): 571–578. DOI logoGoogle Scholar
. 2001. A genomewide screen for autism: Strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet 69(3): 570–581. DOI logoGoogle Scholar
Jones, R.W., Ring, S., Tyfield, L., Hamvas, R., Simmons, H., Pembrey, M., Golding, JALSPAC Study Team.; . 2000. A new human genetic resource: a DNA bank established as part of the Avon longitudinal study of pregnancy and childhood (ALSPAC). Eur J Hum Genet 8(9): 653–660. DOI logoGoogle Scholar
Kamal, M., Valanciute, A., Dahan, K., Ory, V., Pawlak, A., Lang, P., Guellaen, G. & Sahali, D. 2009. C-mip interacts physically with RelA and inhibits nuclear factor kappa B activity. Mol Immunol 46(5): 991–998. DOI logoGoogle Scholar
Lai, C.S., Fisher, S.E., Hurst, J.A., Vargha-Khadem, F. & Monaco, A.P. 2001. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413(6855): 519–523. DOI logoGoogle Scholar
Lesch, K.P., Timmesfeld, N., Renner, T.J., Halperin, R., Röser, C., Nguyen, T.T., Craig, D.W., Romanos, J., Heine, M., Meyer, J., Freitag, C., Warnke, A., Romanos, M., Schäfer, H., Walitza, S., Reif, A., Stephan, D.A. & Jacob, C. 2008. Molecular genetics of adult ADHD: Converging evidence from genome-wide association and extended pedigree linkage studies. J Neural Transm 115(11): 1573–1585. DOI logoGoogle Scholar
Lin P.I., Vance, J.M., Pericak-Vance, M.A. & Martin, E.R. 2007. No gene is an island: The flip-flop phenomenon. Am J Hum Genet 80(3): 531–538. DOI logoGoogle Scholar
Liu J., Nyholt, D.R., Magnussen, P., Parano, E., Pavone, P., Geschwind, D., Lord, C., Iversen, P., Hoh, J., Ott, J., Gilliam, T.CAutism Genetic Resource Exchange Consortium.; . 2001. A genomewide screen for autism susceptibility loci. Am J Hum Genet 69(2): 327–340. DOI logoGoogle Scholar
Luciano, M., Evans, D.M., Hansell, N.K., Medland, S.E., Montgomery, G.W., Martin, N.G., Wright, M.J. & Bates, T.C. 2013. A genome-wide association study for reading and language abilities in two population cohorts. Genes Brain Behav 12: 645–652. DOI logoGoogle Scholar
McCarthy, M.I., Abecasis, G.R., Cardon, L.R., Goldstein, D.B., Little, J., Ioannidis, J.P. & Hirschhorn, J.N. 2008. Genome-wide association studies for complex traits: Consensus, uncertainty and challenges. Nat Rev Genet 9(5): 356–369. DOI logoGoogle Scholar
Mémet, S. 2006. NF-kappaB functions in the nervous system: From development to disease. Biochem Pharmacol 72(9): 1180–1195. DOI logoGoogle Scholar
Mick, E., Todorov, A., Smalley S., Hu, X., Loo, S., Todd, R.D., Biederman, J., Byrne, D., Dechairo, B., Guiney, A., McCracken, J., McGough, J., Nelson, S.F., Reiersen, A.M., Wilens, T.E., Wozniak, J., Neale, B.M. & Faraone, S.V. 2010. Family-based genome-wide association scan of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 49: 898–905. DOI logoGoogle Scholar
Missiaen, L., Dode, L., Vanoevelen, J., Raeymaekers, L. & Wuytack, F. 2007. Calcium in the Golgi apparatus. Cell Calcium 41(5): 405–416. DOI logoGoogle Scholar
Neale, B.M., Lasky-Su, J., Anney, R., Franke, B., Zhou, K., Maller, J.B., Vasquez, A.A., Asherson, P., Chen, W., Banaschewski, T., Buitelaar, J., Ebstein, R., Gill, M., Miranda, A., Oades, R.D., Roeyers, H., Rothenberger, A., Sergeant, J., Steinhausen, H.C., Sonuga-Barke, E., Mulas, F., Taylor, E., Laird, N., Lange, C., Daly, M. & Faraone, S.V. 2008. Genome-wide association scan of attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 147B: 1337–1344. DOI logoGoogle Scholar
Neale, B.M., Medland, S., Ripke, S., Anney, R.J., Asherson, P., Buitelaar, J., Franke, B., Gill, M., Kent, L., Holmans, P., Middleton, F., Thapar, A., Lesch, K.P., Faraone, S.V., Daly, M., Nguyen, T.T., Schafer, H., Steinhausen, H.C., Reif, A., Renner, T.J., Romanos, M., Romanos, J., Warnke, A., Walitza, S., Freitag, C., Meyer, J., Palmason, H., Rothenberger, A., Hawi, Z., Sergeant, J., Roeyers, H., Mick, E. & Biederman, J. 2010. Case-control genome-wide association study of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 49: 906–920. DOI logoGoogle Scholar
Neale, B.M., Medland, S.E., Ripke, S., Asherson, P., Franke, B., Lesch, K.P., Faraone, S.V., Nguyen, T.T., Schafer, H., Holmans, P., Daly, M., Steinhausen, H.C., Freitag, C., Reif, A., Renner, T.J., Romanos, M., Romanos, J., Walitza, S., Warnke, A., Meyer, J., Palmason, H., Buitelaar, J., Vasquez, A.A., Lambregts-Rommelse, N., Gill, M., Anney, R.J., Langely, K., O’Donovan, M., Williams, N., Owen, M., Thapar, A., Kent, L., Sergeant, J., Roeyers, H., Mick, E., Biederman, J., Doyle, A., Smalley, S., Loo, S., Hakonarson, H., Elia, J., Todorov, A., Miranda, A., Mulas, F., Ebstein, RP., Rothenberger, A., Banaschewski, T., Oades, R.D., Sonuga-Barke, E., McGough, J., Nisenbaum, L., Middleton, F., Hu, X. & Nelson, S. 2010. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 49: 884–897. DOI logoGoogle Scholar
Newbury, D.F., Bonora, E., Lamb, J.A., Fisher, S.E., Lai, C.S., Baird, G., Jannoun, L., Slonims, V., Stott, C.M., Merricks, M.J., Bolton, P.F., Bailey, A.J., Monaco, A.PInternational Molecular Genetic Study of Autism Consortium.; . 2002. FOXP2 is not a major susceptibility gene for autism or specific language impairment. Am J Hum Genet 70(5): 1318–1327. DOI logoGoogle Scholar
Newbury, D.F., Winchester, L., Addis, L., Paracchini, S., Buckingham, L.L., Clark, A., Cohen, W., Cowie, H., Dworzynski, K., Everitt, A., Goodyer, I.M., Hennessy, E., Kindley, A.D., Miller, L.L., Nasir, J., O’Hare, A., Shaw, D., Simkin, Z., Simonoff, E., Slonims, V., Watson, J., Ragoussis, J., Fisher, S.E., Seckl, J.R., Helms, P.J., Bolton, P.F., Pickles, A., Conti-Ramsden, G., Baird, G., Bishop, D.V. & Monaco, A.P. 2009. CMIP and ATP2C2 modulate phonological short-term memory in language impairment. Am J Hum Genet 85(2): 264–272. DOI logoGoogle Scholar
Nudel, R., Simpson, N.H., Baird, G., O’Hare, A., Conti-Ramsden, G., Bolton, P.F., Hennessy, E.R., SLI Consortium, Monaco, A.P., Knight, J.C., Winney, B., Fisher, S.E. & Newbury, D.F. 2014a. Associations of HLA alleles with specific language impairment. J Neurodev Disord 6(1): 1. DOI logoGoogle Scholar
Nudel, R., Simpson, N.H., Baird, G., O’Hare, A., Conti-Ramsden, G., Bolton, P.F., Hennessy, E.R., SLI Consortium, Ring, S.M., Davey, Smith, G., Francks, C., Paracchini, S., Monaco, A.P., Fisher, S.E. & Newbury, D.F. 2014b. Genome-wide association analyses of child genotype effects and parent-of-origin effects in specific language impairment. Genes Brain Behav 13(4): 418–429. DOI logoGoogle Scholar
Odell, J.D., Warren, R.P., Warren, W.L., Burger, R.A. & Maciulis, A. 1997. Association of genes within the major histocompatibility complex with attention deficit hyperactivity disorder. Neuropsychobiology 35: 181–186. DOI logoGoogle Scholar
Ogdie, M.N., Macphie, I.L., Minassian, S.L., Yang, M., Fisher, S.E., Francks, C., Cantor, R.M., McCracken, J.T., McGough, J.J., Nelson, S.F., Monaco, A.P. & Smalley, S.L. 2003. A genomewide scan for attention-deficit/hyperactivity disorder in an extended sample: suggestive linkage on 17p11. Am J Hum Genet 72: 1268–1279. DOI logoGoogle Scholar
O’Roak, B.J., Deriziotis, P., Lee, C., Vives, L., Schwartz, J.J., Girirajan, S., Karakoc, E., Mackenzie, A.P., Ng, S.B., Baker, C., Rieder, M.J., Nickerson, D.A., Bernier, R., Fisher, S.E., Shendure, J. & Eichler, E.E. 2011. Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43(6): 585–9. DOI logoGoogle Scholar
O’Roak, B.J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B.P., Levy, R., Ko, A., Lee, C., Smith, J.D., Turner, E.H., Stanaway, I.B., Vernot, B., Malig, M., Baker, C., Reilly, B., Akey, J.M., Borenstein, E., Rieder, M.J., Nickerson, D.A., Bernier, R., Shendure, J. & Eichler, E.E. 2012. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485(7397): 246–250. DOI logoGoogle Scholar
Palmer, C.G., Hsieh, H.J., Reed, E.F., Lonnqvist, J., Peltonen, L., Woodward, J.A. & Sinsheimer, J.S. 2006. HLA-B maternal-fetal genotype matching increases risk of schizophrenia. Am J Hum Genet 79: 710–715. DOI logoGoogle Scholar
Peter, B., Matsushita, M., Oda, K. & Raskind, W. 2014. De novo microdeletion of BCL11A is associated with severe speech sound disorder. Am J Med Genet A 164A(8): 2091–2096. DOI logoGoogle Scholar
Petrin, A.L., Giacheti, C.M., Maximino, L.P., Abramides, D.V., Zanchetta, S., Rossi, N.F., Richieri-Costa, A. & Murray, J.C. 2010. Identification of a microdeletion at the 7q33-q35 disrupting the CNTNAP2 gene in a Brazilian stuttering case. Am J Med Genet A 152A(12): 3164–3172. DOI logoGoogle Scholar
Poelmans, G., Pauls, D.L., Buitelaar, J.K. & Franke, B. 2011. Integrated genome-wide association study findings: Identification of a neurodevelopmental network for attention deficit hyperactivity disorder. Am J Psychiatry 168: 365–377. DOI logoGoogle Scholar
Poot, M., Beyer, V., Schwaab, I., Damatova, N., Van’t Slot, R., Prothero, J., Holder, S.E. & Haaf, T. 2010. Disruption of CNTNAP2 and additional structural genome changes in a boy with speech delay and autism spectrum disorder. Neurogenetics 11(1): 81–89. DOI logoGoogle Scholar
Pratt, S.C., Daly, M.J., Kruglyak, L. 2000. Exact multipoint quantitative-trait linkage analysis in pedigrees by variance components. Am J Hum Genet 66(3):1153–1157. DOI logoGoogle Scholar
Rapin, I. & Dunn, M. 2003. Update on the language disorders of individuals on the autistic spectrum. Brain Dev 25(3): 166–72. DOI logoGoogle Scholar
Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler, H., Shapero, M.H., Carson, A.R., Chen, W., Cho, E.K., Dallaire, S., Freeman, J.L., González, J.R., Gratacòs, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J.R., Marshall, C.R., Mei, R., Montgomery, L., Nishimura, K., Okamura, K., Shen, F., Somerville, M.J., Tchinda, J., Valsesia, A., Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Zhang, J., Armengol, L., Conrad, D.F., Estivill, X., Tyler-Smith, C., Carter, N.P., Aburatani, H., Lee, C., Jones, K.W., Scherer, S.W. & Hurles, M.E. 2006. Global variation in copy number in the human genome. Nature 444(7118): 444–454. DOI logoGoogle Scholar
Roll, P., Vernes, S.C., Bruneau, N., Cillario, J., Ponsole-Lenfant, M., Massacrier, A., Rudolf, G., Khalife, M., Hirsch, E., Fisher, S.E. & Szepetowski, P. 2010. Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex. Hum Mol Genet 19(24): 4848–4860. DOI logoGoogle Scholar
Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Månér, S., Massa, H., Walker, M., Chi, M., Navin, N., Lucito, R., Healy, J., Hicks, J., Ye, K., Reiner, A., Gilliam, T.C., Trask, B., Patterson, N., Zetterberg, A. & Wigler, M. 2004. Large-scale copy number polymorphism in the human genome. Science 305(5683): 525–528. DOI logoGoogle Scholar
Sehested, L.T., Møller, R.S., Bache, I., Andersen, N.B., Ullmann, R., Tommerup, N. & Tümer, Z. 2010. Deletion of 7q34-q36.2 in two siblings with mental retardation, language delay, primary amenorrhea, and dysmorphic features. Am J Med Genet A 152A(12): 3115–3119. DOI logoGoogle Scholar
Shao, Y., Raiford, K.L., Wolpert, C.M., Cope, H.A., Ravan, S.A., Ashley-Koch, A.A., Abramson, R.K., Wright, H.H., DeLong, R.G., Gilbert, J.R., Cuccaro, M.L. & Pericak-Vance, M.A. 2002. Phenotypic homogeneity provides increased support for linkage on chromosome 2 in autistic disorder. Am J Hum Genet 70(4): 1058–1061. DOI logoGoogle Scholar
SLI consortium (SLIC). 2002. A genomewide scan identifies two novel loci involved in specific language impairment. Am J Hum Genet 70(2): 384–398. DOI logoGoogle Scholar
. 2004. Highly significant linkage to the SLI1 locus in an expanded sample of individuals affected by specific language impairment. Am J Hum Genet 74(6): 122512-38.Google Scholar
Smith, A.W., Holden, K.R., Dwivedi, A., Dupont, B.R. & Lyons, M.J. 2014. Deletion of 16q24.1 Supports a role for the ATP2C2 gene in Specific Language Impairment. J Child Neurol [Epub ahead of print].Google Scholar
Spiteri, E., Konopka, G., Coppola, G., Bomar, J., Oldham, M., Ou, J., Vernes, S.C., Fisher, S.E., Ren, B. & Geschwind, D.H. 2007. Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. Am J Hum Genet 81(6): 1144–1157. DOI logoGoogle Scholar
Stergiakouli, E., Hamshere, M., Holmans, P., Langley, K., Zaharieva, I., deCODE Genetics, Psychiatric GWAS Consortium, Hawi, Z., Kent, L., Gill, M., Williams, N., Owen, M.J., O’Donovan, M. & Thapar, A. 2012. Investigating the contribution of common genetic variants to the risk and pathogenesis of ADHD. Am J Psychiatry 169(2): 186–194. DOI logoGoogle Scholar
Strauss, K.A., Puffenberger, E.G., Huentelman, M.J., Gottlieb, S., Dobrin, S.E., Parod, J.M., Stephan, D.A. & Morton, D.H. 2006. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 354(13): 1370–1377. DOI logoGoogle Scholar
Stromswold, K. 1998. Genetics of spoken language disorders. Hum Biol 70(2): 297–324.Google Scholar
. 2001. The heritability of language: A review and metaanalysis of twin, adoption and linkage studies. Language 77(4): 647–723. DOI logoGoogle Scholar
Tager-Flusberg, H. & Joseph, R.M. 2003. Identifying neurocognitive phenotypes in autism. Philos Trans R SocLond B BiolSci 358(1430): 303–314. DOI logoGoogle Scholar
Taylor L.J., Maybery, M.T. & Whitehouse, A.J. 2012. Do children with Specific Language Impairment have a cognitive profile reminiscent of autism? A review of the literature. J Autism Dev Disord 42(10): 2067–2083. DOI logoGoogle Scholar
Teare, M.D. & Barrett, J.H. 2005. Genetic linkage studies. Lancet 366(9490): 1036–1044. DOI logoGoogle Scholar
Tirosh, E. & Cohen, A. 1998. Language deficit with attention-deficit disorder: A prevalent comorbidity. J Child Neurol 13(10): 493–497. DOI logoGoogle Scholar
Torres, A.R., Sweeten, T.L., Cutler, A., Bedke, B.J., Fillmore, M., Stubbs, E.G. & Odell, D. 2006. The association and linkage of the HLA-A2 class I allele with autism. Hum Immunol 67: 346–351. DOI logoGoogle Scholar
Van der Aa, N., Vandeweyer, G., Reyniers, E., Kenis, S., Dom, L., Mortier, G., Rooms, L. & Kooy, R.F. 2012. Haploinsufficiency of CMIP in a girl with autism spectrum disorder and developmental delay due to a de novo deletion on chromosome 16q23.2. Autism Res 5(4): 277–281. DOI logoGoogle Scholar
Verkerk, A.J., Mathews, C.A., Joosse, M., Eussen, B.H., Heutink, P., Oostra, B.ATourette Syndrome Association International Consortium for Genetics.; . 2003. CNTNAP2 is disrupted in a family with Gilles de la Tourette syndrome and obsessive compulsive disorder. Genomics 82(1): 1–9. DOI logoGoogle Scholar
Vernes, S.C., Spiteri, E., Nicod, J., Groszer, M., Taylor, J.M., Davies, K.E., Geschwind, D.H. & Fisher, S.E. 2007. High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. Am J Hum Genet 81(6): 1232–1250. DOI logoGoogle Scholar
Vernes, S.C., Newbury, D.F., Abrahams, B.S., Winchester, L., Nicod, J., Groszer, M., Alarcón, M., Oliver, P.L., Davies, K.E., Geschwind, D.H., Monaco, A.P. & Fisher, S.E. 2008. A functional genetic link between distinct developmental language disorders. N Engl J Med 359(22): 2337–2345. DOI logoGoogle Scholar
Vieland, V.J., Wang, K. & Huang, J. 2001. Power to detect linkage based on multiple sets of data in the presence of locus heterogeneity: Comparative evaluation of model-based linkage methods for affected sib pair data. Hum Hered 51(4): 199–208. DOI logoGoogle Scholar
Villanueva, P., de Barbieri, Z., Palomino, H.M. & Palomino, H. 2008. High prevalence of specific language impairment in Robinson Crusoe Island. A possible founder effect. Rev Med Chil 136(2):186–192. DOI logoGoogle Scholar
Villanueva, P., Newbury, D.F., Jara, L., De Barbieri, Z., Mirza, G., Palomino, H.M., Fernández, M.A., Cazier, J.B., Monaco, A.P. & Palomino, H. 2011. Genome-wide analysis of genetic susceptibility to language impairment in an isolated Chilean population. Eur J Hum Genet 19(6): 687–695. DOI logoGoogle Scholar
Voineagu I., Wang, X., Johnston, P., Lowe, J.K., Tian, Y., Horvath, S., Mill, J., Cantor, R.M., Blencowe, B.J. & Geschwind, D.H. 2011. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 474(7351): 380–384. DOI logoGoogle Scholar
Wang, Y.-p., Tian, Y., Zhu, J.-h., Yang, Y.-f., Zhang, H.-b., Wang, C.-h., Liu, L., L.V.Y & Xiong, L.-p. 2008. Study on the association between HLA-DRB1 genes and ADHD in Xi’an. Chinese Journal of Child Health Care 16: 010.Google Scholar
Wang, K., Zhang, H., Ma, D., Bucan, M., Glessner, J.T., Abrahams, B.S., Salyakina, D., Imielinski, M., Bradfield, J.P., Sleiman, P.M., Kim, C.E., Hou, C., Frackelton, E., Chiavacci, R., Takahashi, N., Sakurai, T., Rappaport, E., Lajonchere, C.M., Munson, J., Estes, A., Korvatska, O., Piven, J., Sonnenblick, L.I., Alvarez Retuerto, A.I., Herman, E.I., Dong, H., Hutman, T., Sigman, M., Ozonoff, S., Klin, A., Owley, T., Sweeney, J.A., Brune, C.W., Cantor, R.M., Bernier, R., Gilbert, J.R., Cuccaro, M.L., McMahon, W.M., Miller, J., State, M.W., Wassink, T.H., Coon, H., Levy, S.E., Schultz, R.T., Nurnberger, J.I., Haines, J.L., Sutcliffe, J.S., Cook, E.H., Minshew, N.J., Buxbaum, J.D., Dawson, G., Grant, S.F., Geschwind, D.H., Pericak-Vance, M.A., Schellenberg, G.D. & Hakonarson, H. 2009. Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature 459(7246): 528–533. DOI logoGoogle Scholar
Weiss, L.A., Arking, D.E.; Gene Discovery Project of Johns Hopkins & the Autism Consortium, Daly, M.J. & Chakravarti, A. 2009. A genome-wide linkage and association scan reveals novel loci for autism. Nature 461(7265): 802–808. DOI logoGoogle Scholar
Whitehouse, A.J., Bishop, D.V., Ang, Q.W., Pennell, C.E. & Fisher, S.E. 2011. CNTNAP2 variants affect early language development in the general population. Genes Brain Behav 10(4): 451–456. DOI logoGoogle Scholar
Xu, C., Aragam, N., Li, X., Villa, E.C., Wang, L., Briones, D., Petty, L., Posada, Y., Arana, T.B., Cruz, G., Mao, C., Camarillo, C., Su, B.B., Escamilla, M.A. & Wang, K. 2013. BCL9 and C9orf5 are associated with negative symptoms in schizophrenia: meta-analysis of two genome-wide association studies. PLoS One 8: e51674. DOI logoGoogle Scholar
Zhang, X.M., Sheng, S.R., Wang, X.Y., Bin, L.H., Wang, J.R. & Li, G.Y. 2004. Expression of tumor related gene NAG6 in gastric cancer and restriction fragment length polymorphism analysis. World J Gastroenterol 10(9):1361–1364.Google Scholar
Zheng, J.Q. & Poo, M.M. 2007. Calcium signaling in neuronal motility. Annu Rev Cell Dev Biol 23: 375–404. DOI logoGoogle Scholar
Zweier, C., de Jong, E.K., Zweier, M., Orrico, A., Ousager, L.B., Collins, A.L., Bijlsma, E.K., Oortveld, M.A., Ekici, A.B., Reis, A., Schenck, A. & Rauch, A. 2009. CNTNAP2 and NRXN1 are mutated in autosomal-recessive Pitt-Hopkins-like mental retardation and determine the level of a common synaptic protein in Drosophila. Am J Hum Genet 85(5): 655–666. DOI logoGoogle Scholar