Article published In:
The Mental Lexicon
Vol. 16:2/3 (2021) ► pp.204239
Ally, B. A., Jones, G. E., Cole, J. A., & Budson, A. E.
(2006) The P300 component in patients with Alzheimer’s disease and their biological children. Biological Psychology, 72 (2), 180–187. DOI logoGoogle Scholar
Amieva, H., Lafont, S., Auriacombe, S., Carret, N. L., Dartigues, J. F., et al.
(2002) Inhibitory breakdown and dementia of the Alzheimer type: a general phenomenon? Journal of Clinical and Experimental Neuropsychology, 24 (4), 503–516. DOI logoGoogle Scholar
Appell, J., Kertesz, A., & Fisman, M.
(1982) A study of language functioning in Alzheimer patients. Brain and Language, 17 (1), 73–91. DOI logoGoogle Scholar
Ashford, J. W., Coburn, K. L., Rose, T. L., & Bayley, P. J.
(2011) P300 energy loss in aging and Alzheimer’s disease. Journal of Alzheimer’s Disease, 261, 229–238. DOI logoGoogle Scholar
Azevedo, N., Atchley, R. A., & Kehayia, E.
Azevedo, N., Kehayia, E., Atchley, R. A., & Nair, V. P. N.
Azizian, A., Freitas, A. L., Watson, T. D., & Squires, N. K.
(2006) Electrophysiological correlates of categorization: P300 amplitude as index of target similarity. Biological Psychology, 71 (3), 278–288. DOI logoGoogle Scholar
Balota, D. A., Cortese, M. J., Sergent-Marshall, S. D., Spieler, D. H., & Yap, M.
(2004) Visual word recognition of single-syllable words. Journal of Experimental Psychology: General, 133 (2), 283. DOI logoGoogle Scholar
Bayles, K. A. & Kaszniak, A. W.
(1987) The brain and age-related dementing diseases. In K. A. Bayles & A. W. Kaszakniak (Eds.), Communication and Cognition in Normal Aging and Dementia. Boston: College-Hill Press.Google Scholar
Bentin, S., Mouchetant-Rostaing, Y., Giard, M., Echallier, J., & Pernier, J.
(1999) ERP manifestations of processing printed words at different psycholinguistic levels: time course and scalp distribution. Journal of Cognitive Neuroscience, 11 (3), 235–260. DOI logoGoogle Scholar
Bowles, N. L., & Poon, L. W.
(1981) The effect of age on speed of lexical access. Experimental Aging Research, 7 (4), 417–425. DOI logoGoogle Scholar
Braaten, A. J., Parsons, T. D., McCue, R., Sellers, A., & Burns, W. J.
(2006) Neurocognitive differential diagnosis of dementing diseases: Alzheimer’s dementia, vascular dementia, frontotemporal dementia, and major depressive disorder. International Journal of Neuroscience, 116 (11), 1271–1293. DOI logoGoogle Scholar
Bruder, G. E., Tenke, C. E., Stewart, J. W., Towey, J. P., Leite, P., Voglmaier, M., & Quitkin, F. M.
(1995) Brain event-related potentials to complex tones in depressed patients: Relations to perceptual asymmetry and clinical features. Psychophysiology, 32 (4), 373–381. DOI logoGoogle Scholar
Carreiras, M., Armstrong, B. C., Perea, M., Frost, R.
(2014) The what, when, where, and how of visual word recognition. Trends Cognitive Science 18 (2), 90–98. DOI logoGoogle Scholar
Caza, N., & Moscovitch, M.
(2005) Effects of cumulative frequency, but not of frequency trajectory, in lexical decision times of older adults and patients with Alzheimer’s disease. Journal of Memory and Language, 53 (3), 456–471. DOI logoGoogle Scholar
Chapman, R. M., Nowlis, G. H., McCrary, J. W., Chapman, J. A., Sandoval, T. C., Guillily, M. D., Gardner, M. N., & Reilly, L. A.
(2007) Brain event-related potentials: Diagnosing early-stage Alzheimer’s disease. Neurobiology of Aging, 28 (2), 194–201. DOI logoGoogle Scholar
Coch, D., & Mitra, P.
(2010) Word and pseudoword superiority effects reflected in the ERP waveform. Brain Research, 1329 1, 159–174. DOI logoGoogle Scholar
Collette, F., Amieva, H., Adam, S., Hogge, M., Van der Linden, M., Fabrigoule, C., & Salmon, E.
(2007) Comparison of inhibitory functioning in mild Alzheimer’s disease and frontotemporal dementia. Cortex, 43 (7), 866–874. DOI logoGoogle Scholar
Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J.
(2001) DRC: a dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108 (1), 204–256. DOI logoGoogle Scholar
Cuetos, F., Herrera, E., & Ellis, A. W.
(2010) Impaired word recognition in Alzheimer’s disease: The role of age of acquisition. Neuropsychologia, 48 (11), 3329–3334. DOI logoGoogle Scholar
Davies, R. A., Arnell, R., Birchenough, J. M., Grimmond, D., & Houlson, S.
(2017) Reading through the life span: Individual differences in psycholinguistic effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43 (8), 1298.Google Scholar
Deacon, D., Dynowska, A., Ritter, W., & Grose-Fifer, J.
(2004) Repetition and semantic priming of nonwords: Implications for theories of N400 and word recognition. Psychophysiology, 41 (1), 60–74. DOI logoGoogle Scholar
Duñabeitia, J. A., Marín, A., & Carreiras, M.
(2009) Associative and orthographic neighborhood density effects in normal aging and Alzheimer’s disease. Neuropsychology, 23 (6), 759–764. DOI logoGoogle Scholar
Duñabeitia, J. A., Marín, A., Aviles, A., Perea, M., & Carreiras, M.
(2009) Constituent priming effects: Evidence for preserved morphological processing in healthy old readers. European Journal of Cognitive Psychology, 21 (2–3), 283–302. DOI logoGoogle Scholar
Duong, A., Whitehead, V., Hanratty, K., & Chertkow, H.
(2006) The nature of lexico-semantic processing deficits in mild cognitive impairment. Neuropsychologia, 44 (10), 1928–1935. DOI logoGoogle Scholar
Edwards, J. D., Vance, D. E., Wadley, V. G., Cissell, G. M., Roenker, D. L., & Ball, K. K.
(2005) Reliability and validity of useful field of view test scores as administered by personal computer. Journal of Clinical and Experimental Neuropsychology, 27 (5), 529–543. DOI logoGoogle Scholar
Edwards, J. D., Ross, L. A., Wadley, V. G., Clay, O. J., Crowe, M., Roenker, D. L., & Ball, K. K.
(2006) The useful field of view test: normative data for older adults. Archives of Clinical Neuropsychology, 21 (4), 275–286. DOI logoGoogle Scholar
Eisenhauer, S., Fiebach, C. J., & Gagl, B.
(2018) Dissociable prelexical and lexical contributions to visual word recognition and priming: Evidence from MEG and behavior. bioRxiv, 410795.Google Scholar
Feldman, H. H., & Woodward, M.
(2005) The staging and assessment of moderate to severe Alzheimer disease. Neurology, 65 (6 suppl 3), S10–S17. DOI logoGoogle Scholar
Feldman, H. H., Van Baelen, B., Kavanagh, S. M., & Torfs, K. E.
(2005) Cognition, function, and caregiving time patterns in patients with mild-to-moderate Alzheimer disease: a 12-month analysis. Alzheimer Disease & Associated Disorders, 19 (1), 29–36. DOI logoGoogle Scholar
Flowers, J. H., Warner, J. L., & Polansky, M. L.
(1979) Response and encoding factors in “ignoring” irrelevant information. Memory & Cognition, 7 (2), 86–94. DOI logoGoogle Scholar
Folstein, M. F., Folstein, S. E., & McHugh, P. R.
(1975) “Mini-Mental State.” A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12 1, 189–198. DOI logoGoogle Scholar
Folstein, M. F., Robins, L. N., & Helzer, J. E.
(1983) The mini-mental state examination. Archives of General Psychiatry, 40 (7), 812. DOI logoGoogle Scholar
Fozard, J. L., & Gordon-Salant, S.
(2001) Changes in vision and hearing with aging. Handbook of the psychology of aging, 51, 241–66.Google Scholar
Glosser, G., Kohn, S. E., Friedman, R. B., Sands, L., & Grugan, P.
(1997) Repetition of single words and nonwords in Alzheimer’s disease. Cortex 33 1, 653–666. DOI logoGoogle Scholar
Gold, B. T., Andersen, A. H., Jicha, G. A., & Smith, C. D.
(2009) Aging influences the neural correlates of lexical decision but not automatic semantic priming. Cerebral Cortex, 19 (11), 2671–2679. DOI logoGoogle Scholar
Gratton, G., Coles, M. G., & Donchin, E.
(1983) A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55 (4), 468–484. DOI logoGoogle Scholar
Grainger, J., & Jacobs, A. M.
(1996) Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review, 103 (3), 518–565. DOI logoGoogle Scholar
Hale, S., & Myerson, J.
(1996) Experimental evidence for differential slowing in the lexical and nonlexical domains. Aging, Neuropsychology, and Cognition, 3 (2), 154–165. DOI logoGoogle Scholar
Joubert, S., Joncas, S., Barbeau, E., Joanette, Y. & Ska, B.
(2006) Cognition. In S. Gauthier (Ed), Clinical diagnosis and management of Alzheimer’s disease, third edition (pp. 165–176). Abington: Informa Healthcare.Google Scholar
Juckel, G., Karch, S., Kawohl, W., Kirsch, V., Jager, et al.
(2012) Age effects on the P300 potential and the corresponding fMRI BOLD-signal. Neuroimage, 60 (4), 2027–2034. DOI logoGoogle Scholar
Katada, E., Sato, K., Ojika, K., & Ueda, R.
(2004) Cognitive event-related potentials: useful clinical information in Alzheimer’s disease. Current Alzheimer Research, 1 (1), 63–69. DOI logoGoogle Scholar
Kavé, G., & Levy, Y.
(2005) The processing of morphology in old age: Evidence from Hebrew. Journal of Speech, Language, and Hearing Research, 48 (6), 1442–1451. DOI logoGoogle Scholar
Kavé, G., & Goral, M.
(2018) Word retrieval in connected speech in Alzheimer’s disease: a review with meta-analyses. Aphasiology, 32 (1), 4–26. DOI logoGoogle Scholar
Lee, M. S., Lee, S. H., Moon, E. O., Moon, Y. J., Kim, S., Kim, S. H., & Jung, I. K.
(2013) Neuropsychological correlates of the P300 in patients with Alzheimer’s disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 40 1, 62–69. DOI logoGoogle Scholar
Lima, S. D., Hale, S., & Myerson, J.
(1991) How general is general slowing? Evidence from the lexical domain. Psychology and Aging, 6 1, 416–425. DOI logoGoogle Scholar
Luis, C. A., Keegan, A. P., & Mullan, M.
(2009) Cross validation of the Montreal Cognitive Assessment in community dwelling older adults residing in the Southeastern US. International Journal of Geriatric Psychiatry, 24 (2), 197–201. DOI logoGoogle Scholar
MacLeod, C. M.
(1991) Half a century of research on the Stroop effect: an integrative review. Psychological Bulletin, 109 (2), 163–203. DOI logoGoogle Scholar
Madden, D. J.
(1992) Four to ten milliseconds per year: age-related slowing of visual word identification. Journal of Gerontology, 47 1, 59–68. DOI logoGoogle Scholar
Madden, D. J., Welsh-Bohmer, K. A., & Tupler, L. A.
(1999) Task complexity and signal detection analyses of lexical decision performance in Alzheimer’s disease. Developmental Neuropsychology, 16 (1), 1–18. DOI logoGoogle Scholar
Massol, S., Midgley, K. J., Holcomb, P. J., & Grainger, J.
(2011) When less is more: feedback, priming, and the pseudoword superiority effect. Brain Research, 1386 1, 153–164. DOI logoGoogle Scholar
Massol, S., Grainger, J., Midgley, K. J., & Holcomb, P. J.
(2012) Masked repetition priming of letter-in-string identification: An ERP investigation. Brain Research, 1472 1, 74–88. DOI logoGoogle Scholar
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M.
(1984) Clinical diagnosis of Alzheimer’s disease Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34 (7), 939–939. DOI logoGoogle Scholar
McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack Jr, C. R., et al.
(2011) The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7 (3), 263–269. DOI logoGoogle Scholar
Mecklinger, A., & Ullsperger, P.
(1993) P3 varies with stimulus categorization rather than probability. Electroencephalography and Clinical Neurophysiology, 86 (6), 395–407. DOI logoGoogle Scholar
Moberg, M., Ferraro, F. R., & Petros, T. V.
(2000) Lexical properties of the Boston Naming Test stimuli: Age differences in word naming and lexical decision latency. Applied Neuropsychology, 7 (3), 147–153. DOI logoGoogle Scholar
Myerson, J., Ferraro, F. R., Hale, S., & Lima, S. D.
(1992) General slowing in semantic priming and word recognition. Psychology and Aging, 7 (2), 257. DOI logoGoogle Scholar
Myerson, J., Hale, S., Chen, J., & Lawrence, B.
(1997) General lexical slowing and the semantic priming effect: The roles of age and ability. Acta Psychologica, 96 (1–2), 83–101. DOI logoGoogle Scholar
Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., et al.
(2005) The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53 (4), 695–699. DOI logoGoogle Scholar
Nikolaev, A., Higby, E., Hyun, J., & Ashaie, S.
(2019) Lexical decision task for studying written word recognition in adults with and without dementia or mild cognitive impairment. JoVE (Journal of Visualized Experiments), (148), e59753. DOI logoGoogle Scholar
Olichney, J. M., Yang, J. C., Taylor, J., & Kutas, M.
(2011) Cognitive event-related potentials: biomarkers of synaptic dysfunction across the stages of Alzheimer’s disease. Journal of Alzheimer’s Disease, 26 1, 215–228. DOI logoGoogle Scholar
Parra, M. A., Ascencio, L. L., Urquina, H. F., Manes, F., & Ibáñez, A. M.
(2012) P300 and neuropsychological assessment in mild cognitive impairment and Alzheimer dementia. Frontiers in Neurology, 3 1, 172. DOI logoGoogle Scholar
Pokryszko-Dragan, A., Słotwiński, K., & Podemski, R.
(2003) Modality-specific changes in P300 parameters in patients with dementia of the Alzheimer type. Medical Science Monitor Basic Research, 9 (4), CR130-CR134.Google Scholar
Polich, J., & Corey-Bloom, J.
(2005) Alzheimer’s disease and P300: review and evaluation of task and modality. Current Alzheimer Research, 2 (5), 515–525. DOI logoGoogle Scholar
Polich, J.
(2007) Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118 1, 2128–2148. DOI logoGoogle Scholar
Ratcliff, R., Thapar, A., Gomez, P., & McKoon, G.
(2004) A diffusion model analysis of the effects of aging in the lexical-decision task. Psychology and Aging, 19 (2), 278. DOI logoGoogle Scholar
Robert, C., & Mathey, S.
(2007) Aging and lexical inhibition: The effect of orthographic neighborhood frequency in young and older adults. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 62 (6), P340–P342. DOI logoGoogle Scholar
Röschke, J., Wagner, P., Mann, K., Fell, J., Grözinger, M. & Frank, C.
(1996) Single trial analysis of event related potentials: A comparison between schizophrenics and depressives. Biological Psychiatry, 40 (9), 844–852. DOI logoGoogle Scholar
Ruz, M., & Nobre, A. C.
(2008) Attention modulates initial stages of visual word processing. Journal of Cognitive Neuroscience, 20 (9), 1727–1736. DOI logoGoogle Scholar
Sereno, S. C., & Rayner, K.
(2003) Measuring word recognition in reading: eye movements and event-related potentials. Trends in Cognitive Sciences, 7 (11), 489–493. DOI logoGoogle Scholar
Shaoul, C., & Westbury, C.
(2006) USENET Orthographic Frequencies for 111,627 English Words (2005–2006) Edmonton, AB: University of Alberta (downloaded from [URL]).
Spironelli, C., & Angrilli, A.
(2007) Influence of phonological, semantic and orthographic tasks on the early linguistic components N150 and N350. International Journal of Psychophysiology, 64 (2), 190–198. DOI logoGoogle Scholar
(2009) Developmental aspects of automatic word processing: language lateralization of early ERP components in children, young adults and middle-aged subjects. Biological Psychology, 80 (1), 35–45. DOI logoGoogle Scholar
Spironelli, C., Penolazzi, B., & Angrilli, A.
(2010) Gender differences in reading in school-aged children: an early ERP study. Developmental Neuropsychology, 35 (4), 357–375. DOI logoGoogle Scholar
Stadtlander, L. M.
(1995) Age differences in orthographic and frequency neighborhoods. Advances in Psychology, 110 1, 72–86. DOI logoGoogle Scholar
Stroop, J. R.
(1935) Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18 (6), 643–662. DOI logoGoogle Scholar
Taler, V., & Jarema, G.
(2007) Lexical access in younger and older adults: the case of the mass/count distinction. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 61 (1), 21–34. DOI logoGoogle Scholar
Taler, V., & Phillips, N. A.
(2008) Language performance in Alzheimer’s disease and mild cognitive impairment: a comparative review. Journal of Clinical and Experimental Neuropsychology, 30 (5), 501–556. DOI logoGoogle Scholar
Yap, M. J., & Balota, D. A.
(2019) Visual word recognition. Oxford University Press.Google Scholar