Part of
Complexity, Accuracy and Fluency in Learner Corpus Research
Edited by Agnieszka Leńko-Szymańska and Sandra Götz
[Studies in Corpus Linguistics 104] 2022
► pp. 2150
Arnold, Taylor, Ballier, Nicolas, Gaillat, Thomas & Lissòn, Paula
2018Predicting CEFR levels in learner English on the basis of metrics and full texts. ArXiv: 1806.11099: 75–82. [URL] (15 December 2021).
Baayen, Harald R.
2008Analyzing Linguistic Data: A Practical Introduction to Statistics Using R. Cambridge: CUP. DOI logoGoogle Scholar
Ballier, Nicolas, Canu, Stéphane, Petitjean, Caroline, Gasso, Gilles, Balhana, Carlos, Alexopoulou, Theodora & Gaillat, Thomas
2020Machine learning for learner English. International Journal of Learner Corpus Research 6(1): 72–103. DOI logoGoogle Scholar
Ballier, Nicolas & Gaillat, Thomas
2016Classifying French learners of English with written-based lexical and complexity metrics. In Actes de la conférence conjointe JEP-TALN-RECITAL 2016 volume 09: ELTAL, Ivan Šmilauer & Jovan Kostov (eds). 1–14. Paris: Association Francophone pour la Communication Parlée (AFCP) and Association pour le Traitement Automatique des Langues (ATALA). [URL] (16 December 2021).
Ballier, Nicolas, Gaillat, Thomas, Simpkin, Andrew, Stearns, Bernardo, Bouyé, Manon & Zarrouk, Manel
2019A supervised learning model for the automatic assessment of language levels based on learner errors. In Transforming Learning with Meaningful Technologies [Lecture Notes in Computer Science], Maren Scheffel, Julien Broisin, Viktoria Pammer-Schindler, Andri Ioannou & Jan Schneider (eds), 308–320. Cham: Springer. DOI logoGoogle Scholar
Benoit, Kenneth, Watanabe, Kohei, Wang, Haiyan, Nulty, Paul, Obeng, Adam, Müller, Stefan & Matsuo, Akitaka
2018Quanteda: An R package for the quantitative analysis of textual data. Journal of Open Source Software 3(30): 774. DOI logoGoogle Scholar
Biber, Douglas, Gray, Bethany, Staples, Shelley & Egbert, Jesse
2020Investigating grammatical complexity in L2 English writing research: Linguistic description versus predictive measurement. Journal of English for Academic Purposes 46: 100869. DOI logoGoogle Scholar
Bulté, Bram & Housen, Alex
2012Defining and operationalising L2 complexity. In Dimensions of L2 Performance and Proficiency: Complexity, Accuracy and Fluency in SLA [Language Learning & Language Teaching 32], Alex Housen, Folkert Kuiken & Ineke Vedder (eds), 21–46. Amsterdam: John Benjamins. DOI logoGoogle Scholar
Bulté, Bram & Roothooft, Hanne
2020Investigating the interrelationship between rated L2 proficiency and linguistic complexity in L2 speech. System 91: 102246. DOI logoGoogle Scholar
Callies, Marcus
2015Learner corpus methodology. In The Cambridge Handbook of Learner Corpus Research, Sylviane Granger, Gaëtanelle Gilquin & Fanny Meunier (eds), 35–56. Cambridge: CUP. DOI logoGoogle Scholar
Chall, Jeanne S. & Dale, Edgar
1995Readability Revisited: The New Dale-Chall Readability Formula. Cambridge MA: Brookline Books.Google Scholar
Chavent, Marie, Kuentz, Simonet V., Liquet, Benoit & Saracco, Jérôme
2012ClustOfVar: An R package for the clustering of variables. Journal of Statistical Software 50(13): 1–16. DOI logoGoogle Scholar
Chen, Miao & Zechner, Klaus
2011Computing and evaluating syntactic complexity features for automated scoring of spontaneous non-native speech. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Dekang Lin, Yuji Matsumoto & Rada Mihalcea (eds), 722–731. Stroudsburg PA: Association for Computational Linguistics. [URL] (15 December 2021).
Council of Europe
2001Common European Framework of Reference for Languages: Learning, Teaching, Assessment. Cambridge: CUP.Google Scholar
2018Common European Framework of Reference for Languages: Learning, Teaching, Assessment: Companion Volume with New Descriptors. Strasbourg: Council of Europe.Google Scholar
Crossley, Scott A., Kyle, Kristopher, Allen, Laura K., Guo, Liang & McNamara, Danielle S.
2014Linguistic microfeatures to predict L2 writing proficiency: A case study in automated writing evaluation. The Journal of Writing Assessment 7(1). [URL] (15 December 2021).
Crossley, Scott A., Kyle, Kristopher & McNamara, Danielle S.
2016The tool for the automatic analysis of text cohesion (TAACO): Automatic assessment of local, global, and text cohesion. Behavior Research Methods 48(4): 1227–1237. DOI logoGoogle Scholar
Crossley, Scott A., Salsbury, Tom, McNamara, Danielle S. & Jarvis, Scott
2011Predicting lexical proficiency in language learner texts using computational indices. Language Testing 28(4): 561–580. DOI logoGoogle Scholar
Dale, Robert, Anisimoff, Ilya & Narroway, George
2012HOO 2012: A report on the preposition and determiner error correction shared task. In Proceedings of the Seventh Workshop on Building Educational Applications Using NLP, Joel Tetreault, Jill Burstein & Claudia Leacock (eds), 54–62. Stroudsburg PA: Association for Computational Linguistics. [URL] (15 December 2021).
Davies, Mark
Eguchi, Masaki & Kyle, Kristopher
2020Continuing to explore the multidimensional nature of lexical sophistication: The case of oral proficiency interviews. The Modern Language Journal 104(2): 381–400. DOI logoGoogle Scholar
Fellbaum, Christiane
(ed.) 1998WordNet: An Electronic Lexical Database [Language, Speech, and Communication]. Cambridge MA: The MIT Press. DOI logoGoogle Scholar
François, Thomas & Watrin, Patrick
2011On the contribution of MWE-based features to a readability formula for French as a foreign language. In Proceedings of the International Conference Recent Advances in Natural Language Processing 2011, Ruslan Mitkov & Galia Angelova (eds), 441–447. Hissar: Association for Computational Linguistics. [URL] (16 December 2021).
Gaillat, Thomas, Janvier, Pascale, Dumont, Bénédicte, Lafontaine, Antoine & Kerfati, Anas
2019CELVA.Sp: A corpus for the visualisation of linguistic profiles in language learners. PERL 2019 Université de Paris Diderot, Dec 2019, Paris, France. [URL] (15 December 2021).
Gaillat, Thomas, Simpkin, Andrew, Ballier, Nicolas, Stearns, Bernardo, Sousa, Annanda, Bouyé, Manon, & Zarrouk, Manel
2021Predicting CEFR levels in learners of English: The use of microsystem criterial features in a machine learning approach. ReCALL. DOI logoGoogle Scholar
Gilquin, Gaëtanelle
2015From design to collection of learner corpora. In The Cambridge Handbook of Learner Corpus Research [Cambridge Handbooks in Language and Linguistics], Sylviane Granger, Gaëtanelle Gilquin & Fanny Meunier (eds), 9–34. Cambridge: CUP. DOI logoGoogle Scholar
Hawkins, John A. & Filipović, Luna
2012Criterial Features in L2 English: Specifying the Reference Levels of the Common European Framework [English Profile Studies 1]. Cambridge: CUP.Google Scholar
Khushik, Ghulam A. & Huhta, Ari
2020Investigating syntactic complexity in EFL learners’ writing across Common European Framework of Reference Levels A1, A2, and B1. Applied Linguistics 41(4): 506–532. DOI logoGoogle Scholar
Kim, Minkyung & Crossley, Scott A.
2018Modeling second language writing quality: A structural equation investigation of lexical, syntactic, and cohesive features in source-based and independent writing. Assessing Writing 37: 39–56. DOI logoGoogle Scholar
Koizumi, Rie & In’nami, Yo
2012Effects of text length on lexical diversity measures: Using short texts with less than 200 tokens. System 40(4): 522–532. DOI logoGoogle Scholar
Kyle, Kristopher
2016Measuring Syntactic Development in L2 Writing: Fine-grained Indices of Syntactic Complexity and Usage-Based Indices of Syntactic Sophistication. PhD dissertation, Georgia State University.
Kyle, Kristopher & Crossley, Scott A.
2015Automatically assessing lexical sophistication: Indices, tools, findings, and application. TESOL Quarterly, 49(4): 757–86. DOI logoGoogle Scholar
Kyle, Kristopher, Crossley, Scott & Berger, Cynthia
2018The tool for the automatic analysis of lexical sophistication (TAALES), Version 2.0. Behavior Research Methods 50(3): 1030–1046. DOI logoGoogle Scholar
Kyle, Kristopher, Crossley, Scott A. & Jarvis, Scott
2021Assessing the validity of lexical diversity indices using direct judgements. Language Assessment Quarterly 18(2): 154–170. DOI logoGoogle Scholar
Lahmann, Cornelia, Steinkrauss, Rasmus & Schmid, Monika S.
2019Measuring linguistic complexity in long-term L2 speakers of English and L1 attriters of German. International Journal of Applied Linguistics 29(2): 173–191. DOI logoGoogle Scholar
Leacock, Claudia, Chodorow, Martin & Tetreault, Joel
2015Automatic grammar- and spell-checking for language learners. In The Cambridge Handbook of Learner Corpus Research [Cambridge Handbooks in Language and Linguistics], Sylviane Granger, Gaëtanelle Gilquin & Fanny Meunier (eds), 567–586. Cambridge: CUP. DOI logoGoogle Scholar
Leńko-Szymańska, Agnieszka
2019Defining and Assessing Lexical Proficiency. New York NY: Routledge. DOI logoGoogle Scholar
Levy, Roger & Andrew, Galen
2006Tregex and Tsurgeon: Tools for querying and manipulating tree data structures. In Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC 2006), Nicoletta Calzolari, Khalid Choukri, Aldo Gangemi, Bente Maegaard, Joseph Mariani, Jan Odijk, Daniel Tapias (eds), 2231–2234. Genoa: European Language Resources Association (ELRA). [URL] (15 December 2021).
Liaw, Andy & Wiener, Matthew
2002Classification and regression by randomForest. R News 2(3): 18–22.Google Scholar
Lissón, Paula
2017Investigating the use of readability metrics to detect differences in written productions of learners: A corpus-based study. Bellaterra Journal of Teaching and Learning Language and Literature 10(4): 68–86. DOI logoGoogle Scholar
Lu, Xiaofei
2010Automatic analysis of syntactic complexity in second language writing. International Journal of Corpus Linguistics 15(4): 474–496. DOI logoGoogle Scholar
2012The relationship of lexical richness to the quality of ESL learners’ oral narratives. The Modern Language Journal 96(2): 190–208. DOI logoGoogle Scholar
2014Computational Methods for Corpus Annotation and Analysis. Dordrecht: Springer. DOI logoGoogle Scholar
Manning, Christopher D., Surdeanu, Mihai, Bauer, John, Finkel, Jenny, Bethard, Steven J. & McClosky, David
2014The Stanford CoreNLP Natural Language Processing Toolkit. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Kalina Bontcheva & Jingbo Zhu (eds), 55–60. Baltimore MD: Association for Computational Linguistics. [URL] (15 December 2021). DOI logo
McCarthy, Philip M. & Jarvis, Scott
2010MTLD, vocd-D, and HD-D: A validation study of sophisticated approaches to lexical diversity assessment. Behavior Research Methods 42(2): 381–392. DOI logoGoogle Scholar
Ng, Hwee Tou, Wu, Siew Mei, Briscoe, Ted, Hadiwinoto, Christian, Susanto, Raymond Hendy & Bryant, Christopher
2014The CoNLL-2014 shared task on grammatical error correction. In Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task, Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian Hadiwinoto, Raymond Hendy Susanto & Christopher Bryant (eds), 1–14. Baltimore MD: Association for Computational Linguistics. [URL] (15 December 2021). DOI logo
Norris, John M. & Ortega, Lourdes
2009Towards an organic approach to investigating CAF in instructed SLA: The Case of complexity. Applied Linguistics 30(4): 555–578. DOI logoGoogle Scholar
Norris, John & Ortega, Lourdes
2008Defining and measuring SLA. In The Handbook of Second Language Acquisition, Catherine Doughty & Michael H. Long (eds), 716–761. Oxford: John Wiley & Sons. DOI logoGoogle Scholar
O’Keeffe, Anne & Mark, Geraldine
2017The English Grammar Profile of learner competence: Methodology and key findings. International Journal of Corpus Linguistics 22(4): 457–489. DOI logoGoogle Scholar
Pilán, Ildikó & Volodina, Elena
2018Investigating the importance of linguistic complexity features across different datasets related to language learning. In Proceedings of the Workshop on Linguistic Complexity and Natural Language Processing, Leonor Becerra-Bonache, M. Dolores Jiménez-López, Carlos Martín-Vide, Adrià Torrens-Urrutia (eds), 49–58. Santa Fe NM: Association for Computational Linguistics. [URL] (15 December 2021).
R Core Team
2012R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.Google Scholar
Read, John
2000Assessing Vocabulary. Cambridge: CUP. DOI logoGoogle Scholar
Rudzewitz, Björn, Ziai, Ramon, Nuxoll, Florian, Kuthy, Kordula De & Meurers, Walt Detmar
2019Enhancing a web-based language tutoring system with learning analytics. In Joint Proceedings of the Workshops of the 12th International Conference on Educational Data Mining co-located with the 12th International Conference on Educational Data Mining, EDM 2019 Workshops, Luc Paquette, Cristóbal Romero (eds). Montréal: CEUR-WS. [URL] (15 December 2021).
Shute, Valerie J.
2008Focus on formative feedback. Review of Educational Research 78(1): 153–189. DOI logoGoogle Scholar
Smith, Edgar A., & Senter, Roderick J.
1967Automated Readability Index. AMRL-TR-66-22. Wright-Paterson Air Force Base OH: Aerospace Medical Division.Google Scholar
Swartz, Merryanna L. & Yazdani, Masoud
2012Intelligent Tutoring Systems for Foreign Language Learning: The Bridge to International Communication. Berlin: Springer.Google Scholar
Tanaka-Ishii, Kumiko & Aihara, Shunsuke
2015Computational constancy measures of texts – Yule’s K and Rényi’s entropy. Computational Linguistics 41(3): 481–502. DOI logoGoogle Scholar
Tetreault, Joel, Burstein, Jill, Kochmar, Ekaterina, Leacock, Claudia & Yannakoudakis, Helen
(eds) 2018Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications. New Orleans LA: Association for Computational Linguistics. DOI logoGoogle Scholar
Treffers-Daller, Jeanine, Parslow, Patrick & Williams, Shirley
2016Back to basics: How measures of lexical diversity can help discriminate between CEFR Levels. Applied Linguistics 39(3): 302–327. DOI logoGoogle Scholar
Vajjala, Sowmya & Loo, Kaidi
2014Automatic CEFR level prediction for Estonian learner text. In Proceedings of the Third Workshop on NLP for Computer Assisted Language Learning, Elena Volodina, Lars Borin, Ildikó Pilán (eds), 113–127. Uppsala: LiU Electronic Press. [URL] (15 December 2021).
Venant, Rémi & D’Aquin, Mathieu
2019Towards the prediction of semantic complexity based on concept graphs. In 12th International Conference on Educational Data Mining (EDM 2019), Collin F. Lynch, Agathe Merceron, Michel Desmarais & Roger Nkambou (eds), 188–197. Montreal: International Educational Data Mining Society (IEDMS). [URL] (15 December 2021).
Venant, Rémi, Sharma, Kshitij, Dillenbourg, Pierre, Vidal, Philippe & Broisin, Julien
2017A study of learners’ behaviors in hands-on learning situations and their correlation with academic performance. In Artificial Intelligence in Education [Lecture Notes in Computer Science 10331], Elisabeth André, Ryan Baker, Xiangen Hu, Ma, Mercedes T. Rodrigo & Benedict du Boulay (eds), 570–573. Cham: Springer. DOI logoGoogle Scholar
Volodina, Elena, Pilán, Ildikó & Alfter, David
2016Classification of Swedish learner essays by CEFR levels. In CALL Communities and Culture – Short Papers from EUROCALL 2016, Salomi Papadima-Sophocleous, Linda Bradley & Sylvie Thouësny (eds), 456–461. Dublin: DOI logoGoogle Scholar
Wolfe-Quintero, Kate, Inagaki, Shunji & Kim, Hae-Young
1998Second Language Development in Writing: Measures of Fluency, Accuracy, & Complexity. Honolulu HI: Second Language Teaching & Curriculum Center, University of Hawai’i at Manoa.Google Scholar
Yannakoudakis, Helen, Andersen, Øistein E., Geranpayeh, Ardeshir, Briscoe, Ted & Nicholls, Diane
2018Developing an automated writing placement system for ESL learners. Applied Measurement in Education 31(3): 251–267. DOI logoGoogle Scholar
Yannakoudakis, Helen, Briscoe, Ted & Medlock, Ben
2011A new dataset and method for automatically grading ESOL texts. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Dekang Lin, Yuji Matsumoto, Rada Mihalcea (eds), 180–189. Stroudsburg PA: Association for Computational Linguistics. [URL] (15 December 2021).
Yule, G. Udny
1944The Statistical Study of Literary Vocabulary. Cambridge: CUP.Google Scholar