Prelude as lifespan gauge
Quantifying psychological processes over time
Through multiple versions of
Prelude, readers can follow the progress of a poem 41 years in the making, a period that exceeds by far the timeline of its narration. To do so I employed automated analysis platforms LIWC (
Pennebaker, Chung, Ireland, Gonzales, & Booth, 2007a) and SEANCE (
Crossley, Kyle, & McNamara, 2016). Results reveal that Wordsworth exhibited habits of mind resonant with maturation, especially in his increased positivity and abstraction. Discriminant function analysis revealed four psychological markers that almost completely identified shifts between editions. Indices connoting trust and sadness, as well as positive adjectives and the cognitive indicator of exclusion, accounted for 63 percent of the variance. The study offers a methodology for considering multiple versions of any text in which the passage of time becomes an important marker. I present these findings within a digital humanities framework and conclude by discussing applications.
Article outline
- Wordsworth’s preoccupation with time
-
Prelude examined through the digital humanities
- Research questions
- Method
- Corpus
- Instruments
- Procedures
- Statistical analysis
- Concurrent validity
- Establishing tendencies of the meta-Prelude
- Results
- Q1
- Q2
- Magnitudes of difference
- Discriminant function analysis
- Discussion
- Future study and cautions
- Acknowledgements
-
References
References (75)
References
Aue, A., & Gamon, M. (2005). Customizing sentiment classifiers to new domains: A case study. In Proceedings of Recent Advances in Natural Language Processing. Retrieved from [URL]
Abe, J. A. (2016). A longitudinal follow-up study of happiness and meaning-making. Journal of Positive Psychology, 111, 489–489.
Bishop, J. (1959). Wordsworth and the “spots of time.” ELH, 261, 45–65.
Blitzer, J., Dredze, M., & Pereira, F. (June, 2007). Biographies, Bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification. Paper presented at the conference of the Association of Computational Linguistics, Prague, Czech Republic.
Bottou, L., Haffner, P., Howard, P. G., Simard, P., Bengio, Y., & le Cun, Y. (1998). High quality document image compression with DjVu. Journal of Electronic Imaging, 71, 410–425.
Branch, L. (2006). Rituals of spontaneity: Sentiment and secularism from free prayer to Wordsworth. Waco, TX: Baylor University Press.
Brown, M. T., & Wicker, L. R. (2000). Discriminant analysis. In H. E. A. Tinsley & S. D. Brown (Eds.), Handbook of applied multivariate statistics and mathematical modeling (pp. 209–235). New York, NY: Academic Press.
Brown, N. M., Mendenhall, R., Black, M. L., Moer, M. V., Zerai, A., & Flynn, K. (2016). Mechanized margin to digitized center: Black feminism’s contributions to combatting erasure within the digital humanities. International Journal of Humanities & Arts Computing: A Journal Of Digital Humanities, 10(1), 110–125.
Brose, A., Scheibe, S., & Schmiedek, F. (2013). Life contexts make a difference: Emotional stability in younger and older adults. Psychology and Aging, 28(1), 148–159. .
Burman, J. T., Green, C. D., & Shanker, S. (2015). On the meanings of self-regulation: Digital humanities in service of conceptual clarity. Child Development, 861, 1507–1507.
Cambria, E., Grassi, M., Hussain, A., & Havasi, C. (2012). Sentic computing for social media marketing. Multimedia Tools and Applications, 591, 557–557. .
Cambria, E., Havasi, C., & Hussain, A. (2012). SenticNet 2: A semantic and affective resource for opinion mining and sentiment analysis. In G. M. Youngblood & P. M. Mcarthy (Eds.), Proceedings of the 25th Florida artificial intelligence research society conference (pp. 202–207). Palo Alto, CA: The Association for the Advancement of Artificial Intelligence Press.
Cambria, E., Hussain, A., & Xia, Y. (2012). Affective common sense knowledge acquisition for sentiment analysis. Paper presented at Language Resources and Evaluation, Istanbul.
Cambria, E., Poria, S., Gelbukh, A., & Thelwall, M. (2017). Sentiment analysis is a big suitcase. IEEE Intelligent Systems, 321, 74–80.
Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81–105.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.
Cohen, J. (1992). A power primer. Psychological Bulletin, 1121, 155–159.
Crossley, S. A., Kyle, K., & McNamara, D. S. (2015). To aggregate or not? Linguistic features in automatic essay scoring and feedback systems. Journal of Writing Assessment, 81, 80. Retrieved from [URL]
Crossley, S. A., Kyle, K., McNamara, D. S. (2016). Sentiment analysis and social cognition engine (SEANCE ): An automatic tool for sentiment, social cognition, and social-order analysis. Behavior Research Methods, 481.
Davis, J. P. (1992). The “spots of time”: Wordsworth’s poetic debt to Coleridge. Colby Quarterly, 281, 65–84.
Diehl, M., Hay, E., & Berg, K. M. (2011). The ratio between positive and negative affect and flourishing mental health across adulthood. Aging & Mental Health, 15(7), 882–893.
Donohue, W. A., Liang, Y., & Druckman, D. (2014). Validating LIWC dictionaries: The Oslo I Accords. Journal of Language & Social Psychology, 33(3), 282–301.
Eijnatten, J. van., Pieters, T. & Verheul, J., (2013). Big data for global history: The transformative promise of digital humanities. BMGN-Low Countries Historical Review, 121, pp.55–77.
Fagnani, C., Medda, E., Stazi, M., Caprara, G. V., & Alessandri, G. (2014). Investigation of age and gender effects on positive orientation in Italian twins. International Journal of Psychology, 491, 453–461.
Felluga, D. (2017). COVE: Central Online Victorian Educator. Retrieved from [URL]
Ferguson, C. J. (2009). An effect size primer: A guide for clinicians and researchers. Professional Psychology: Research and Practice, 401, 532–538.
Fernandez, K. C., Gordon, E. A., Rodebaugh, T. L., & Heimberg, R. G. (2016). Exploring linguistic correlates of social anxiety in romantic stories. Cognitive Behaviour Therapy, 451, 351–366.
Fernández-Cabana, M., García-Caballero, A., Alves-Pérez, M. T., García-García, M. J., & Mateos, R. (2013). Suicidal traits in Marilyn Monroe’s fragments: An LIWC analysis. Crisis: The Journal of Crisis Intervention and Suicide Prevention, 34(2), 124–130.
Field, A. (2005). Discovering statistics using SPSS (2nd ed.). Thousand Oaks, CA: Sage.
Graesser, A. C., McNamara, D. S., & Kulikowich, J. (2011). Coh-Metrix: Providing multilevel analyses of text characteristics. Educational Researcher, 401, 223–234.
Graham, S., & Perin, D. (2007). A meta-analysis of writing instruction for adolescent students. Journal of Educational Psychology, 991, 445–476.
Gravetter, F. J., & Wallnau, L. B. (2014). Statistics for the Behavioral Sciences. Belmont, CA: Cengage.
Heuser, R. & Le-Khac, L. (2012). A quantitative literary history of 2,958 nineteenth-century British novels: The semantic cohort method. Pamphlet 4 from Stanford Literary Lab. Retrieved from [URL]
Hu, M., & Liu, B. (2004). Mining and summarizing customer reviews. In W. Kim & R. Kohavi (Eds.), Proceedings of the tenth ACM SIGKDD international conference on knowledge discovery and data mining (pp. 168–177). Washington, DC: Association for Computing Machinery Press.
Hutto, C. J., & Gilbert, E. (2014). Vader: A parsimonious rule-based model for sentiment analysis of social media text. In E. Adar & P. Resnick (Eds.), Proceedings of the eighth international AAAI conference on weblogs and social media (pp. 216–225). Palo Alto, CA: Association for the Advancement of Artificial Intelligence Press.
Kaldenberg, E. R., Ganzeveld, P., Hosp, J. L., & Rodgers, D. B. (2016). Common characteristics of writing interventions for students with learning disabilities: A synthesis of the literature. Psychology in the Schools, 531, 938–953.
Kern, M. L., Eichstaedt, J. C., Schwartz, H. A., Park, G., Ungar, L. H., Stillwell, D. J., & Seligman, M. E. P. (2014). From “Sooo excited!!!” to “So proud”: Using language to study development. Developmental Psychology, 50(1), 178–188.
Kousta, S., Vigliocco, G., Vinson, D. P., Andrews, M., & Campo, del E. (2011). Journal of Experimental Psychology: General, 1401, 14–34.
Kurtz, M. M., Ragland, J. D., Moberg, P. J., & Gur, R. C. (2004). The Penn conditional exclusion test: A new measure of executive-function with alternate forms for repeat administration. Archives of Clinical Neuropsychology, 191, 191–201.
Lasswell, H. D., & Namenwirth, J. Z. (1969). The Lasswell value dictionary. New Haven, CT: Yale University Press.
Lindenberger, H. (1963). On Wordsworth’s Prelude. Princeton, NJ: Princeton.
Maher, J. M., Markey, J. C., & Ebert-May, D. (2013). The other half of the story: Effect size analysis in quantitative research. CBE – Life Sciences Education, 121, 345–351.
Markowitz, D. M., & Hancock, J. T. (2016). Linguistic obfuscation in fraudulent science. Journal of Language & Social Psychology, 35(4), 435–445.
Mast, M. S., Gatica-Perez, D., Frauendorfer, D., Nguyen, L., & Choudhury, T. (2015). Social sensing for psychology: Automated interpersonal behavior assessment. Current Directions in Psychological Science, 241, 154–160.
Mohammad, S. M., & Turney, P. D. (2010). Emotions evoked by common words and phrases: Using mechanical Turk to create an emotion lexicon. In Proceedings of the NAACL HLT 2010 workshop on computational approaches to analysis and generation of emotion in text (pp. 26–34). Stroudsburg, PA: Association for Computational Linguistics.
Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing a word – emotion association lexicon. Computational Intelligence, 291, 436–465.
Moretti, G., Sprugnoli, R., Menini, S., & Tonelli, S. (2016). ALCIDE: Extracting and visualizing content from large document collections to support humanities studies. Knowledge-Based Systems, 1111, 100–112.
Nowviskie, B. (2015). Digital Humanities in the Anthropocene. Digital Scholarship in the Humanities, 301, i4–i15.
Ogden, J. T. (1975). The structure of imaginative experience in Wordsworth’s Prelude
. The WordsworthCircle, 61, 290–98.
Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment classification using machine learning techniques. In Proceedings of the ACL-02 conference on empirical methods in natural language processing (pp. 79–86). Stroudsburg, PA: Associationfor Computational Linguistics.
Pang, B., Lee, L., & Vaithyanathan, S. (November, 2002). Thumbs up? Sentiment classification using machine learning techniques. Paper presented at Association for Computational Linguistics, Stroudsburg, PA.
Pennebaker, J. W., & Stone, L. D. (2003). Words of wisdom: Language use over the life span. Journal of Personality and Social Psychology, 851, 291–301.
Pennebaker, J. W., C. K. Chung, Ireland, M., A. Gonzales, & Booth, R. J. (2007a). Linguistic inquiry and word count (LIWC) 2007. Austin: University of Texas.
Pennebaker, J. W., C. K. Chung, Ireland, M., Gonzales, A., & Booth, R. J. (2007b). The development and psychometric properties of LIWC2007. Austin, TX: LIWC.net.
Phillips, M. G., & Osmond, G. (2015). Australia’s women surfers: History, methodology and the digital humanities. Australian Historical Studies, 46(2), 285–303.
Pilar Salas-Zárate, M. del, López-López, E., Valencia-García, R., Aussenac-Gilles, N., Almela, Á., & Alor-Hernández, G. (2014). A study on LIWC categories for opinion mining in Spanish reviews. Journal of Information Science, 401, 749–749.
Poole, A. H. (2017). The conceptual ecology of digital humanities. Journal of Documentation, 731, 91–91. .
Robinson, R. L., Navea, R., & Ickes, W. (2013). Predicting final course performance from students’ written self-introductions: A LIWC analysis. Journal of Language & Social Psychology, 321, 469–469. .
Ruyskensvelde, S. van. (2014). Towards a history of e-ducation? Exploring the possibilities of digital humanities for the history of education. Paedagogica Historica, 50(6), 861–870.
Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 441, 695–729.
Smyth, J. (1998). Written emotional expression: Effect sizes, outcome types, and moderating variables. Journal of Consulting and Clinical Psychology, 661, 174–184.
Stone, P., Dunphy, D. C., Smith, M. S., Ogilvie, D. M., & Associates. (1966). The general inquirer: A computer approach to content analysis. Cambridge: Massachusetts Institute of Technology Press.
Trochim, W., & Donnelly, J. P. (2006). The research methods knowledge base. Belmont, CA: Cengage.
Wilkens, M. (2015). Digital humanities and its application in the study of literature and culture. Comparative Literature, 671, 11–11.
Wordsworth, W. (1798). Tintern Abbey. Accessed March 20, 2017 from [URL]
Wordsworth, W. (1802). My heart leaps up. Retrieved from [URL]
Wordsworth, W. (1979). The prelude: 1799, 1805, 1850. New York, NY: Norton.
Wordsworth, W. (1995). The two-part prelude. New York, NY: Penguin.
Wordsworth, W. (2009). Letter to the Bishop of Llandaff. In W. J. B. Owens and J. W. Smyser (Eds.) Wordsworth’s political writings (pp. 13–58). Benton Harbor, MI: Ambis.
Wordsworth, W. (2017). Two addresses to the Freeholders of Westmoreland. Retrieved from [URL]
Wuensch, K. (2008). Two group discriminant function analysis. Retrieved from [URL]
Yarkoni, T. (2012). Psychoinformatics: New horizons at the interface of the psychological and computing sciences. Current Directions in Psychological Science, 211, 391–391.
Yu, Y., Duan, W., & Cao, Q. (2013). The impact of social and conventional media on firm equity value: A sentiment analysis approach. Decision Support Systems, 551, 919–926.
Yu, X., Liu, Y., Huang, X., & An, A. (2012). Mining online reviews for predicting sales performance: A case study in the movie domain. IEEE Transactions on Knowledge and Data Engineering, 241, 720–734.
Cited by (2)
Cited by two other publications
Junker, Christine R., Mark S. Cubberley & Stephen J. Jacquemin
This list is based on CrossRef data as of 19 july 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers.
Any errors therein should be reported to them.