This perspective paper discusses four general desiderata of current computational stylistics and
(neuro-)cognitive poetics concerning the development of (a) appropriate databases/training corpora, (b) advanced
qualitative-quantitative narrative analysis (Q2NA) and machine learning tools for feature extraction, (c) ecologically valid
literary test materials, and (d) open-access reader-response data banks. In six explorative computational stylistics studies, it
introduces a number of tools that provide QNA indices of the foregrounding potential at the sublexical, lexical, inter- and
supralexical levels for poems by Shakespeare, Blake, or Dickens. These concern lexical diversity and aesthetic potential,
sentiment analysis, sublexical sonority scores or phrase structure, and topics analysis. The results illustrate the complex
interplay of stylistic features and the necessity for theoretical guidance and interdisciplinary cooperation in selecting adequate
training corpora, QNA tools, test texts, and response measures.
Abramo, F., Gambino, R., Pulvirenti, G., Xue, S., Sylvester, T., Mangen, A., Papp-Zipernovszky, O., Lüdtke, J. & Jacobs, A. M. (2018). A qualitative-quantitative analysis of Shakespeare’s Sonnet 60. Style, in revision.
Altmann, U., Bohrn, I. C., Lubrich, O., Menninghaus, W., & Jacobs, A. M. (2012). The power of emotional valence-from cognitive to affective processes in reading. Frontiers in Human Neuroscience, 6(192).
Altmann, U., Bohrn, I. C., Lubrich, O., Menninghaus, W., & Jacobs, A. M. (2014). Fact vs fiction: How paratextual information shapes our reading processes. Social Cognitive and Affective Neuroscience, 9(1), 22–29.
Andrzejewski, D., Zhu, X., & Craven, M. (2009). Incorporating domain knowledge into topic modeling via dirichlet forest priors. ICML ’09: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 25–32, New York, NY: ACM.
Armeni, K., Willems, R. M., & Frank, S. L. (2017). Probabilistic language models in cognitive neuroscience: promises and pitfalls. Neuroscience and Biobehavioral Reviews, 831, 579–588.
Aryani, A., Jacobs, A. M., & Conrad, M. (2013). Extracting salient sublexical units from written texts: “Emophon,” a corpus-based approach to phonological iconicity. Frontiers in Psychology, 4(654).
Aryani, A., Kraxenberger, M., Ullrich, S., Jacobs, A. M., & Conrad, M. (2016). Measuring the basic affective tone of poems via phonological saliency and iconicity. Psychology of Aesthetics, Creativity, and the Arts, 101, 191–204.
Bambini, V., Canal, P., Resta, D., & Grimaldi, M. (2018). Time course and neurophysiological underpinnings of metaphor in literary context. Discourse Processes.
Baroni, M., Bernardini, S., Ferraresi, A., & Zanchetta, E. (2009). The WaCky wide web: A collection of very large linguistically processed web-crawled corpora. Language Resources and Evaluation, 431, 209–226.
Berlyne, D. E. (1971). Aesthetics and psychobiology. New York, NY: Appleton-Century-Crofts.
Bestgen, Y., & Vincze, N. (2012). Checking and boot-strapping lexical norms by means of word similarity indexes. Behavior Research Methods, 44(4), 998–1006.
Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with Python. O’Reilly Media.
Bohrn, I. C., Altmann, U., Lubrich, O., Menninghaus, W., & Jacobs, A. M. (2013). When we like what we know – a parametric fMRI analysis of beauty and familiarity. Brain Language, 1241, 1–8.
Bornet, C., & Kaplan, F. (2017). A simple set of rules for characters and place recognition in French novels. Frontiers in Digital Humanities, 4(6).
Braun, M., Jacobs, A. M., Hahne, A., Ricker, B., Hofmann, M., & Hutzler, F. (2006). Model-generated lexical activity predicts graded ERP amplitudes in lexical decision. Brain Research, 1073–1074, 431–439.
Bradley, M. M., & Lang, P. J. (1999). Affective norms for English words (ANEW): Stimuli instruction and affective ratings technical report C-1. Gainesville: University of Florida.
Braun, M., Hutzler, F., Ziegler, J. C., Dambacher, M., & Jacobs, A. M. (2009). Pseudo homophone effects provide evidence of early lexico-phonological processing in visual word recognition. Human Brain Mapping, 30(7), 1977–1989.
Braun, M., Hutzler, F., Munte, T. F., Rotte, M., Dambacher, M., Richlan, F., & Jacobs, A. M. (2015). The neural bases of the pseudohomophone effect: Phonological constraints on lexico-semantic processing in reading. Neuroscience, 2951, 151–163.
Breen, M. (2014). Empirical investigations of the role of implicit prosody in sentence processing. Language and Linguistics Compass, 8(2), 37–50.
Briesemeister, B. B., Kuchinke, L., & Jacobs, A. M. (2011). Discrete emotion norms for nouns: Berlin a ective word list (DENN – BAWL). Behavior Research Methods, 43(2), 441–448.
Brunswik, E. (1956). Perception and the representative design of psychological experiments (2nd ed.). Berkeley: University of California Press.
Burke, M. (2013). The rhetorical neuroscience of style: On the primacy of style elements during literary discourse processing. Journal of Literary Semantics, 421, 199–215.
Burrows, J. F. (1986). Modal verbs and moral principles: an aspect of Jane Austen’s style, Literary and Linguistic Computing, 11, 9–23.
Burrows, J. (2002). ‘Delta’: A measure of stylistic difference and a guide to likely authorship. Literary and Linguistic Computing, 17(3), 267–87.
Busemann, A. (1948). Stil und Charakter. Untersuchungen zur Psychologie der individuellen Redeform, Meisenheim.
Castiglione, D. (2017). Difficult poetry processing: Reading times and the narrativity hypothesis. Language and Literature, 261, 99–121.
Citron, F. M. M., Weekes, B. S., & Ferstl, E. C. (2012). How are affective word ratings related to lexico-semantic properties? Evidence from the Sussex Affective Word List (SAWL). Applied Psycholinguist, 351, 313–331.
Crossley, S. A., Kyle, K., & McNamara, D. S. (2017). Sentiment Analysis and Social Cognition Engine (SEANCE): An automatic tool for sentiment, social cognition, and social-order analysis. Behavior Research Methods, 49(3), 803–821.
Dalvean, M. (2015). Ranking contemporary American poems. Digital Scholarship in the Humanities, 30, 1.
Davis, P. (2013). Reading and the reader. Oxford, United Kingdom: Oxford University Press.
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society for Information Science, 411, 391–407.
Delmonte, R. (2016). Exploring Shakespeare’s Sonnets with SPARSAR. Linguistics and Literature Studies, 4(1), 61–95.
De Smedt, T., & Daelemans, W. (2012). Pattern for Python. Journal of Machine Learning Research, 131, 2031–2035.
Eder, M. (2013). Mind your corpus: Systematic errors in authorship attribution. Literary and Linguistic Computing, 28(4), 604–614.
Eder, M., Rybicki, J., & Kestemont, M. (2016). Stylometry with R: A package for computational text analysis. R Journal, 8(1), 107–121.
Epstein, R. (2004). Consciousness, art and the brain: Lessons from Marcel Proust. Consciousness and Cognition, 131, 213–240.
Fechner, G. T. (1876). Vorschule der Ästhetik, Vol. 21. Leipzig: Breitkopf & Härtel.
Fónagy, I. (1961). Communication in poetry. Word, 171, 194–218.
Fónagy, I. (1983/1991). La vive voix: essais de psycho-phonetique. Paris: Payot.
Forsyth, R. S. (2000). Pops and flops: Some properties of famous English poems. Empirical Studies of the Arts, 18(1), 49–67.
Forsyth, R. S., & Holmes, D. I. (1996). Feature-finding for text classification. Literary and Linguistic Computing, 111, 163–174.
Fucks, W. (1955). Mathematische Analyse von Sprachelementen, Sprachstil und Sprachen, Köln.
Graesser, A. C., McNamara, D. S., Louwerse, M. M., & Cai, Z. (2004). Coh-Metrix: Analysis of text on cohesion and language. Behavior Research Methods, Instruments, & Computers, 361, 193–202.
Hayward, M. (1991). A connectionist model of poetic meter. Poetics, 201, 303–317.
Henrich, V., Hinrichs, E., & Suttner, K. (2012). Automatically linking germanet to Wikipedia for harvesting corpus examples for germanet senses. Journal for Language Technology and Computational Linguistics, 271, 1–19.
Herrmann, J. B., van Dalen-Oskam, K., & Schöch, C. (2015). Revisiting style, a key concept in literary studies. Journal of Literary Theory, 9(1), 25–52.
Hoffstaedter, P. (1987). Poetic text processing and its empirical investigation. Poetics, 161, 75–91.
Hofmann, M. J., Kuchinke, L., Biemann, C., Tamm, S., & Jacobs, A. M. (2011). Remembering words in context as predicted by an associative read-out model. Frontiers in Psychology, 2(252).
Hofmann, M. J., & Jacobs, A. M. (2014). Interactive activation and competition models and semantic context: From behavioral to brain data. Neuroscience & Biobehavioral Reviews, 461, 85–104.
Hogan, P. C. (2003). Cognitive science, literature and the arts. New York, NY: Routledge.
Hollis, G., Westbury, C., & Lefsrud, L. (2017). Extrapolating human judgments from skip-gram vector representations of word meaning. The Quarterly Journal of Experimental Psychology, 1–45.
Hoorn, J., Frank, S., Kowalczyk, W., & van der Ham, F. (1999). Neural network identification of poets using letter sequences. Literary and Linguistic Computing, 14(3), 311–338.
Hoover, D. L. (2007). Corpus stylistics, stylometry, and the styles of Henry James. Style, 41(2), 174–203.
Hoshi, H., & Menninghaus, W. (2018). The eye tracks the aesthetic appeal of sentences. Journal of Vision, 18(3).
Hsu, C. T., Jacobs, A. M., Citron, F., & Conrad, M. (2015). The emotion potential of words and passages in reading harry potter: An fMRI study. Brain and Language, 1421, 96–114.
Hutto, C. J., & Gilbert, E. E. (2014). VADER: A parsimonious rule-based model for sentiment analysis of social media rext. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI.
Jacobs, A. M. (2015a). Towards a neurocognitive poetics model of literary reading. In R. Willems (Ed.), Cognitive neuroscience of natural language use (pp. 135–159). Cambridge, United Kingdom: Cambridge University Press.
Jacobs, A. M. (2015b). Neurocognitive poetics: Methods and models for investigating the neuronal and cognitive-affective bases of literature reception. Frontiers in Human Neuroscience, 9, 186.
Jacobs, A. M. (2017). Quantifying the beauty of words: A neurocognitive poetics perspective. Frontiers in Human Neuroscience, 11, 622.
Jacobs, A. M. (2018). The Gutenberg English Poetry Corpus: Exemplary quantitative narrative analyses. Frontiers in Digital Humanities, 5(5).
Jacobs, A. M., & Kinder, A. (2017). The brain is the prisoner of thought: A machine-learning assisted quantitative narrative analysis of literary metaphors for use in Neurocognitive Poetics. Metaphor and Symbol, 32(3), 139–160.
Jacobs, A. M., & Kinder, A. (2018). What makes a metaphor literary? Answers from two computational studies. Metaphor and Symbol, in press.
Jacobs, A. M., & Willems, R. M. (2017). The fictive brain: Neurocognitive correlates of engagement in literature. Review of General Psychology. 221, 147–160.
Jacobs, A. M., Võ, M. L. H., Briesemeister, B. B., Conrad, M., Hofmann, M. J., Kuchinke, L., Lüdtke, J., & Braun, M. (2015). 10 years of BAWLing into a ective and aesthetic processes in reading: What are the echoes?Frontiers in Psychology, 6, 714.
Jacobs, A. M., Hofmann, M. J., & Kinder, A. (2016). On elementary affective decisions: To like or not to like, that is the question. Frontiers in Psychology, 7, 1836.
James, W. (1890/1950). The principles of psychology. New York, NY: Dover.
Jannidis, F., & Lauer, G. (2014). Burrows’s delta and its use in German literary history. In M. Erlin & L. Tatlock (Eds.), Distant readings: Topologies of German culture in the long nineteenth century (pp. 29–54). Rochester, NY: Camden House.
Jurafsky, D., & Martin, J. H. (2016). N-grams (draft chapter). [URL]
Kao, J., & Jurafsky, D. (2012). A computational analysis of style, affect, and imagery in contemporary poetry. NAACL Workshop on Computational Linguistics for Literature. [URL]
Kaplan, D., & Blei, D. (2007). A computational approach to style in American poetry. IEEE Conference on Data Mining.
Katz, A. N., Paivio, A., & Marschark, M. (1985). Poetic comparisons: Psychological dimensions of metaphoric processing. Journal of Psycholinguistic Research, 141, 365–383.
Katz, A., Paivio, A., Marschark, M., & Clark, J. (1988). Norms for 204 literary and 260 non- literary metaphors on psychological dimensions. Metaphor and Symbolic Activity, 3(4), 191–214.
Keats, J. (1958). Letter 199, To George and Georgiana Keats. In H. Rollins (Ed.), The letters of John Keats (Vol. 21). Cambridge, Massachusetts: Harvard University Press.
Keidel, J. L., Davis, P. M., Gonzalez-Diaz, V., Martin, C. D., & Thierry, G. (2013). How Shakespeare tempests the brain: Neuroimaging insights. Cortex, 49(4).
Kintsch, W. (1980). Learning from text, levels of comprehension, or: why anyone would read a story anyway. Poetics, 91, 87–98.
Kintsch, W. (2000). Metaphor comprehension: A computational theory. Psychonomic Bulletin & Review, 71, 257–266.
Kintsch, W., & van Dijk, T. A. (1978). Toward a model of text comprehension and production. Psychological Review, 851, 363–394.
Kraxenberger, M. (2017). On sound-emotion associations in poetry (Doctoral dissertation). Freie Universität Berlin.
Kraxenberger, M., & Menninghaus, W. (2017). Affinity for poetry and aesthetic appreciation of joyful and sad poems. Frontiers in Psychology, 7, 2051.
Kucera, H., & Francis, W. N. (1967). Computational analysis of present-day American English. Providence, RI: Brown University Press.
Kutas, M. (2006). One lesson learned: Frame language processing – literal and figurative – as a human brain function. Metaphor and Symbol, 211, 285–325.
Larsen, S. E., & Seilman, U. (1988). Personal remindings while reading literature. Text, 81, 411–429.
Lea, R. B., Rapp, D. N., Elfenbein, A., Mitchel, A. D., & Romine, R. S. (2008). Sweet silent thought: Alliteration and resonance in poetry comprehension. Psychological Science, 19(7), 709–716.
Leech, G. N. (1969). A linguistic guide to English poetry. London, United Kingdom: Longman.
Lehne, M., Engel, P., Menninghaus, W., Jacobs, A. M., & Koelsch, S. (2015). Reading a suspenseful literary text activates brain areas related to social cognition and predictive inference. PLOS One, 10(5).
Louwerse, M. M. (2001). An analytic and cognitive parametrization of coherence relations. Cognitive Linguistics, 12(3), 291–315.
Lüdtke, J., Meyer-Sickendiek, B., & Jacobs, A. M. (2014). Immersing in the stillness of an early morning: Testing the mood empathy hypothesis in poems. Psychology of Aesthetics, Creativity, and the Arts, 81, 363–377.
Mandera, P., Keuleers, E., & Brysbaert, M. (2015). How useful are corpus-based methods for extrapolating psycholinguistic variables?The Quarterly Journal of Experimental Psychology, 68(8), 1623–1642.
Marschark, M., Katz, A. N., & Paivio, A. (1983). Dimensions of metaphor. Journal of Psycholinguistic Research, 121, 17–40.
Martindale, C. (1978). The evolution of English poetry. Poetics, 71, 231–248.
Menninghaus, W., Bohrn, I. C., Altmann, U., Lubrich, O., & Jacobs, A. M. (2014). Sounds funny? Humor effects of phonological and prosodic figures of speech. Psychology of Aesthetics, Creativity, and the Arts, 8(1), 71.
Miall, D. S. (2001). Sounds of contrast: An empirical approach to phonemic iconicity. Poetics, 291, 55–70.
Miall, D. S., & Kuiken, D. (1994). Foregrounding, defamiliarization and affect: Response to literary stories. Poetics, 221, 389–407.
Miall, D. S., & Kuiken, D. (2002). The effects of local phonetic contrasts in readers’ responses to a short story. Empirical Studies of the Arts, 201, 157–175.
Michel, J. B., Shen, Y. K., Aiden, A. P., Veres, A., Gray, M. K., The Google Books Team, … Lieberman Aiden, E. (2011). Quantitative analysis of culture using millions of digitized books. Science, 331(6014), 176–182.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. Retrieved from [URL]
Miller, G. A. (1995). WordNet: A lexical database for English. Communications of the ACM, 38(11), 39–41.
Neuhäuser, R. (1991). Sound and meaning in romantic poetry: Preseren’s Poeziie. Russian Literature, 85–108.
O’Sullivan, N., Davis, P., Billington, J., Gonzalez-Diaz, V., & Corcoran, R. (2015). “Shall I compare thee”: e neural basis of literary awareness, and its bene ts to cognition. Cortex, 731, 144–157.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., … Dubourg, V. (2011). scikit-learn: Machine learning in Python. The Journal of Machine Learning Research, 121, 2825–2830.
Pennebaker, J. W., & Francis, M. E. (1999). Linguistic inquiry and word count (LIWC). Mahwah, NJ: Erlbaum.
Petrie, K. J., Pennebaker, J. W., & Sivertsen, B. (2008). Things we said today: A linguistic analysis of the Beatles. Psychology of Aesthetics, Creativity, and the Arts, 21, 197–202.
Recchia, G., & Louwerse, M. M. (2015). Reproducing affective norms with lexical co-occurrence statistics: Predicting valence, arousal, and dominance. The Quarterly Journal of Experimental Psychology, 68(8), 1584–1598.
Rehuřek, R., & Sojka, P. (2010). Software framework for topic modelling with large corpora. Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks (pp. 45–50). Valletta, Malta: ELRA.
Riegel, M., Wierzba, M., Wypych, M., Zurawski, L., Jednorog, K., Grabowska, A., & Marchewka, A. (2015). Nencki Affective Word List (NAWL): Cultural adaptation of the Berlin Affective Word List-Reloaded (BAWL-R) for Polish. Behavior Research Methods, 471, 1222–1236.
Rouse, B., & Bennett, J. R. (1967). Editorial. Style, 1(1), v–vii.
Schmidtke, D. S., Schröder, T., Jacobs, A. M., & Conrad, M. (2014a). ANGST: Affective norms for German sentiment terms, derived from the affective norms for English words. Behavior Research Methods, 461, 1108–1118.
Schmidtke, D. S., Conrad, M., & Jacobs, A. M. (2014b). Phonological iconicity. Frontiers in Psychology, 5, 80.
Schrott, R., & Jacobs, A. M. (2011). Gehirn und Gedicht: Wie wir unsere Wirklichkeiten konstruieren (Brain and Poetry: How We Construct Our Realities). München: Hanser.
Shen, Y. (2008). Metaphor and poetic figures. In R. W. Gibbs, Jr. (Ed.), The Cambridge handbook of metaphor and thought (pp. 295–307). Cambridge, United Kingdom: Cambridge University Press.
Simonton, D. K. (1989). Shakespeare’s sonnets: A case of and for single-case historiometry. Journal of Personality, 57(3), 695–721.
Simonton, D. K. (1990). Lexical choices and aesthetic success: A computer content analysis of 154 Shakespeare sonnets. Computers and the Humanities, 241, 254–264.
Steen, G. (2004). Can discourse properties of metaphor affect metaphor recognition?Journal of Pragmatics, 36(7), 1295–1313.
Steyvers, M., Smyth, P., & Chemuduganta, C. (2011). Combining background knowledge and learned topics. Topics in Cognitive Science, 31, 18–47.
Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: Rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods, 14(4), 323–348.
Stockwell, P. (2009). The cognitive poetics of literary resonance. Language and Cognition, 11, 25–44.
Stone, P. J., Dunphy, D. C., Smith, M. S., & Ogilvie, D. M. (1966). The general inquirer: A computer approach to content analysis. Cambridge: Massachusetts Institute of Technology Press.
Tsur, R. (1992). What makes sound patterns expressive? The poetic mode of speech perception. Durham, NC: Duke University Press.
Turner, F., & Poeppel, E. (1983). The neural lyre: Poetic meter, the brain and time. Poetry Magazine, 121, 277–309.
Turney, P. D., & Littman, M. L. (2003). Measuring praise and criticism: Inference of semantic orientation from association. ACM Transactions on Information Systems (TOIS), 21(4), 315–346.
Ullrich, S., Aryani, A., Kraxenberger, M., Jacobs, A. M., & Conrad, M. (2017). On the relation between the general affective meaning and the basic sublexical, lexical, and interlexical features of poetic texts – A case study using 57 poems of H. M. Enzensberger. Frontiers in Psychology, 7, 2073.
van den Hoven, E., Hartung, F., Burke, M., & Willems, R. M. (2016). Individual differences in sensitivity to style during literary reading: Insights from eye-tracking. Collabra, 21, 1–16.
van Peer, W., Hakemulder, J., & Zyngier, S. (2007). Lines on feeling: Foregrounding, aesthetics and meaning. Language and Literature, 161, 197–213.
Vendler, H. (1997). The art of Shakespeare’s sonnets. Cambridge, MA: Harvard University Press.
Võ, M. L. H., Jacobs, A. M., & Conrad, M. (2006). Cross-validating the Berlin affective word list. Behavioral Research Methods, 381, 606–609.
Võ, M. L. H., Conrad, M., Kuchinke, L., Hartfeld, K., Hofmann, M. J., & Jacobs, A. M. (2009). The Berlin Affective Word List reloaded (BAWL-R). Behavioral Research Methods, 411, 534–539.
Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English lemmas. Behavior Research Methods, 451, 1191–1207.
Westbury, C., Keith, J., Briesemeister, B. B., Hofmann, M. J., & Jacobs, A. M. (2015). Avoid violence, rioting, and outrage; approach celebration, delight, and strength: Using large text corpora to compute valence, arousal, and the basic emotions. Quarterly Journal of Experimental Psychology, 681, 1599–1622.
Whissell, C. (1999). Phonosymbolism and the emotional nature of sounds: Evidence of the preferential use of particular phonemes in texts of differing emotional tone. Perceptual and Motor Skills, 891, 19–48.
Willems, R. M., Frank, S. L., Nijhof, A. D., Hagoort, P., & Van den Bosch, A. (2016). Prediction during natural language comprehension. Cerebral Cortex, 261, 2506–2516.
Wu, Z., & Palmer, M. (1994). Verbs semantics and lexical selection. Proceedings of the 32nd annual meeting on Association for Computational Linguistics, ACL ’94, pages 133–138, Stroudsburg, PA, USA. Association for Computational Linguistics.
Wundt, W. M. (1874). Grundzüge der Physiologischen Psychologie. Leipzig: Engelmann.
Xue, X., Giordano, D., Lüdtke, J., Gambino, R., Pulvirenti, G., Spampinato, C., & Jacobs, A. M. (2017). Weary with toil, I haste me to my bed: Eye tracking Shakespeare sonnets. Talk given at the 19th European Conference on Eye Movements, Wuppertal, Germany, 2017.
Yaron, I. (2008). What is a “difficult” poem? Towards a definition. Journal of Literary Semantics, 37(2), 129–150.
Ziegler, J. C., Jacobs, A. M., & Klueppel, D. (2001). Pseudohomophone effects in lexical decision: Still a challenge for current word recognition models. Journal of Experimental Psychology: Human Perception & Performance, 271, 547–559.
2022. Computational Models of Readers' Apperceptive Mass. Frontiers in Artificial Intelligence 5
Nishihara, Takayuki
2022. EFL learners’ reading traits for lexically easy short poetry. Cogent Education 9:1
Papp-Zipernovszky, Orsolya, Anne Mangen, Arthur Jacobs & Jana Lüdtke
2022. Shakespeare sonnet reading: An empirical study of emotional responses. Language and Literature: International Journal of Stylistics 31:3 ► pp. 296 ff.
Jacobs, Arthur M., Berenike Herrmann, Gerhard Lauer, Jana Lüdtke & Sascha Schroeder
2020. Sentiment Analysis of Children and Youth Literature: Is There a Pollyanna Effect?. Frontiers in Psychology 11
Usée, Franziska, Arthur M. Jacobs & Jana Lüdtke
2020. From Abstract Symbols to Emotional (In-)Sights: An Eye Tracking Study on the Effects of Emotional Vignettes and Pictures. Frontiers in Psychology 11
Xue, Shuwei, Arthur M. Jacobs & Jana Lüdtke
2020. What Is the Difference? Rereading Shakespeare’s Sonnets —An Eye Tracking Study. Frontiers in Psychology 11
Jacobs, Arthur M.
2019. Sentiment Analysis for Words and Fiction Characters From the Perspective of Computational (Neuro-)Poetics. Frontiers in Robotics and AI 6
This list is based on CrossRef data as of 29 december 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers.
Any errors therein should be reported to them.