In this theoretical paper, we would like to pave the ground for future empirical
studies in Neurocognitive Poetics by describing relevant properties of
Shakespeare’s 154 sonnets extracted via Quantitative
Narrative Analysis. In the first two parts, we quantify aspects of the sonnets’
cognitive and affective-aesthetic features, as well as indices of their thematic
richness, symbolic imagery, and semantic association potential. In the final
part, we first demonstrate how the results of these quantitative narrative
analyses can be used for generating testable predictions for empirical studies
of literature. Second, we feed the quantitative narrative analysis data into a
machine learning algorithm which successfully classifies the 154 sonnets into
two main categories, i.e. the young man and dark
lady poems. This shows how quantitative narrative analysis data can
be combined with computational modeling for identifying those of the many
quantifiable sonnet features that may play a key role in their reception.
Altmann, U., Bohrn, I. C., Lubrich, O., Menninghaus, W., & Jacobs, A. M. (2012). The power of emotional valence-from cognitive to affective
processes in reading. Frontiers in Human Neuroscience, 6(192).
Altmann, U., Bohrn, I. C., Lubrich, O., Menninghaus, W., & Jacobs, A. M. (2014). Fact vs fiction-how paratextual information shapes our reading
processes. Social Cognitive and Affective Neuroscience, 9(1), 22–29.
Anderson, T., & Crossley, S. (2011). “Rue with a Difference: A Stylistic Analysis of the Rhetoric of
Suicide in Hamlet” (pp. 192–214). In Jonathan Culpepper and Mireille Ravassat (Eds.), Stylistics and Shakespeare’s language: Transdisciplinary
approaches. Bloomsbury.
Aryani, A., Jacobs, A. M., & Conrad, M. (2013). Extracting salient sublexical units from written texts:
“Emophon,” a corpus-based approach to phonological iconicity. Frontiers in Psychology, 41:654.
Aryani, A., Kraxenberger, M., Ullrich, S., Jacobs, A. M., & Conrad, M. (2016). Measuring the ba- sic a ective tone of poems via phonological
saliency and iconicity. Psychology of Aesthetics, Creativity, and the Arts, 101, 191–204.
Beaty, R. E., Benedek, M., Silvia, P. J., & Schacter, D. L. (2016). Creative cognition and brain network dynamics. Trends in Cognitive Sciences, 201, 87–95.
Berlyne, D. E. (1971). Aesthetics and Psychobiology. New York: Appleton-Century-Crofts.
Bestgen, Y. (1994). Can emotional valence in stories be determined from
words?. Cognition & Emotion, 8(1), 21–36.
Bohrn, I. C., Altmann, U., & Jacobs, A. M. (2012a). Looking at the brains behind figurative language – A
quantitative meta-analysis of neuroimaging studies on metaphor, idiom and
irony processing. Neuropsychologia, 501, 2669–2683.
Bohrn, I. C., Altmann, U., Lubrich, O., Menninghaus, W., & Jacobs, A. M. (2012b). Old proverbs in new skins – an FMRI study on
defamiliarization. Frontiers in Psychology, 31:204.
Bohrn, I. C., Altmann, U., Lubrich, O., Menninghaus, W., & Jacobs, A. M. (2013). When we like what we know – A parametric fMRI analysis of
beauty and familiarity. Brain and Language, 124(1), 1–8.
Boston, M. F., Hale, J., Kliegl, R., Patil, U., & Vasishth, S. (2008). Parsing costs as predictors of reading difficulty: An evaluation
using the Potsdam Sentence Corpus. Journal of Eye Movement Research, 2(1), 1–12.
Boyd, B. (2012). Why lyrics last: Evolution, Cognition, and Shakespeare’s
Sonnets. Harvard University Press.
Bradley, M. M., & Lang, P. J. (1999). Affective Norms for English Words (ANEW): Stimuli Instruction and
Affective Ratings Technical Report C-1. Gainesville, FL: University of Florida.
Briesemeister, B. B., Kuchinke, L., & Jacobs, A. M. (2011). Discrete emotion norms for nouns: Berlin affective word list
(DENN – BAWL). Behavior Research Methods, 43(2), 441–448.
Briesemeister, B. B., Kuchinke, L., & Jacobs, A. M. (2014). Emotion word recognition: Discrete information effects first,
continuous later?. Brain Research, 15641, 62–71.
Briesemeister, B. B., Kuchinke, L., Jacobs, A. M., & Braun, M. (2015). Emotions in reading: Dissociation of happiness and
positivity. Cognitive, Affective, & Behavioral Neuroscience, 15(2), 287–298.
Brown, S., Gao, X., Tisdelle, L., Eickhoff, S. B., & Liotti, M. (2011). Naturalizing aesthetics: brain areas for aesthetic appraisal
across sensory modalities. Neuroimage, 58(1), 250–258.
Brysbaert, M., & New, B. (2009). Moving beyond Kučera and Francis: A critical evaluation of
current word frequency norms and the introduction of a new and improved word
frequency measure for American English. Behavior Research Methods, 41(4), 977–990.
Burke, M. (2011). Literary reading, cognition and emotion: An exploration of the oceanic
mind. London: Routledge.
Burke, M. (2015). The neuroaesthetics of prose fiction: Pitfalls, parameters and
prospects. Frontiers in Human Neuroscience, 91.
Chatterjee, A., & Vartanian, O. (2014). Neuroaesthetics. Trends in Cognitive Sciences, 18(7), 370–375.
Chen, Q., Zhang, J., Xu, X., Scheepers, C., Yang, Y., & Tanenhaus, M. K. (2016). Prosodic expectations in silent reading: ERP evidence from rhyme
scheme and semantic congruence in classic Chinese poems. Cognition, 1541, 11–21.
Citron, F. M. (2012). Neural correlates of written emotion word processing: a review of
recent electrophysiological and hemodynamic neuroimaging
studies. Brain and Language, 122(3), 211–226.
Cook, A. (2010). Shakespearean neuroplay: Reinvigorating the study of dramatic texts and
performance through cognitive science. NY: Palgrave Macmillan
Crane, M. T. (2001). Shakespeare’s Brain: Reading with Cognitive Theory. Princeton University Press.
Crossley, S. A., Kyle, K., & McNamara, D. S. (2016). The tool for the automatic analysis of text cohesion (TAACO):
Automatic assessment of local, global, and text cohesion. Behavior Research Methods, 48(4), 1227–1237.
Crossley, S. A., Kyle, K., & McNamara, D. S. (2017). Sentiment Analysis and Social Cognition Engine (SEANCE): An
automatic tool for sentiment, social cognition, and social-order
analysis. Behavior Research Methods, 49(3), 803–821.
Crystal, D. (2012). Think on my Words: Exploring Shakespeare's Language (Canto
Classics). Cambridge: Cambridge University Press.
Cupchik, G. C. (1986). A decade after Berlyne: New directions in experimental
aesthetics. Poetics, 15(4–6), 345–369.
De Beaugrande, R. A. (1979). Toward a general theory of creativity. Poetics, 8(3), 269–306.
Delmonte, R. (2016). Exploring Shakespeare’s Sonnets with SPARSAR. Linguistics and Literature Studies, 4(1), 61–95.
Dietterich, T. G. (2000). An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, boosting, and
randomization. Machine Learning, 40(2), 139–157.
Fellbaum, C. (Ed.). (1998). WordNet: An electronic lexical database. Cambridge: MIT Press.
Forgács, B., Bohrn, I., Baudewig, J., Hofmann, M. J., Pléh, C., & Jacobs, A. M. (2012). Neural correlates of combinatorial semantic processing of literal
and figurative noun noun compound words. Neuroimage, 63(3), 1432–1442.
Frank, S. L. (2013). Uncertainty reduction as a measure of cognitive load in sentence
comprehension. Topics in Cognitive Science, 5(3), 475–494.
Frank, S. L., Otten, L. J., Galli, G., & Vigliocco, G. (2015). The ERP response to the amount of information conveyed by words
in sentences. Brain and Language, 1401, 1–11.
Goldman, A. I. (2006). Simulating minds: The philosophy, psychology, and neuroscience of
mindreading. Oxford University Press.
Graesser, A. C., McNamara, D. S., Louwerse, M. M., & Cai, Z. (2004). Coh-Metrix: Analysis of text on cohesion and
language. Behavior Research Methods, 36(2), 193–202.
Graesser, A. C., & McNamara, D. S. (2010). Computational analyses of multilevel discourse
comprehension. Topics in Cognitive Science, 3(2), 371–398.
Green, M. C., & Brock, T. C. (2000). The role of transportation in the persuasiveness of public
narratives. Journal of Personality and Social Psychology, 79(5), 701–721.
Grünbein, D. (1996). Katze und Mond. In D. Grünbein (Eds) Galilei Vermisst Dantes Hölle und Bleibt an den Maßen Hängen (pp. 116–128). Frankfurt AM: Suhrkamp.
Habermas, T., & de Silveira, C. (2008). The development of global coherence in life narratives across
adolescence: Temporal, causal, and thematic aspects. Developmental Psychology, 44(3), 707–721.
Harker, W. J. (1997). Literary texts as models: Implications for the empirical study of
literature. In S. Tötösy de Zepetnek & I. Sywenky (Eds.), The systemic and empirica lapproach to literature and culture as theory
and application (pp. 51–65). Edmonton, Canada: University of Alberta.
Hofmann, M. J., & Jacobs, A. M. (2014). Interactive activation and competition models and semantic
context: From behavioral to brain data. Neuroscience & Biobehavioral Reviews, 461, 85–104.
Hope, J., & Witmore, M. (2004). The very large textual object: a prosthetic reading of
Shakespeare. Early Modern Literary Studies, 9(3), 1–36.
Hsu, C. T., Conrad, M., & Jacobs, A. M. (2014). Fiction feelings in Harry Potter: Haemodynamic response in the
mid-cingulate cortex correlates with immersive reading
experience. Neuroreport, 25(17), 1356–1361.
Hsu, C. T., Jacobs, A. M., Citron, F. M., & Conrad, M. (2015). The emotion potential of words and passages in reading Harry
Potter – An fMRI study. Brain and Language, 1421, 96–114.
Hutcheon, L. (2012). A Theory of Adaptation. 2nd edition with Siobhan O’Flynn. London and New York: Routledge.
Hutchins, R. (Ed.) (1952). Great books of the Western world (541 vols.), Chicago: University of Chicago Press.
Jacobs, A. M. (2011). Neurokognitive Poetik: Elemente eines Modells des
literarischen Lesens [Neurocognitive poetics: Elements of a model of
literary reading]. In R. Schrott and A. M. Jacobs (Eds.), Gehirn und Gedicht: Wie wir unsere Wirklichkeiten
konstruieren [Brain and poetry: How we construct our
realities] (pp. 492–520). Munich: Carl Hanser.
Jacobs, A. M. (2015a). Towards a neurocognitive poetics model of literary
reading, in R. Willems (Ed.) Towards a Cognitive Neuroscience of Natural Language Use (pp. 135–159). Cambridge: Cambridge University Press.
Jacobs, A. M. (2015b). Neurocognitive poetics: Methods and models for investigating the
neuronal and cognitive-affective bases of literature
reception. Frontiers in Human Neuroscience, 9:186.
Jacobs, A. M., and Kinder, A. (2015). Worte als Worte erfahren: wie erarbeitet das Gehirn
Gedichte (Experience words as words: how the brain constructs
poems), in A. Pompe (Ed.) Kind und Gedicht [Child and Poem] (pp. 57–76). Berlin: Rombach.
Jacobs, A. M., & Kinder, A. (2017). The brain is the prisoner of thought: A machine-learning assisted
quantitative narrative analysis of literary metaphors for use in
Neurocognitive Poetics. Metaphor & Symbol, in press.
Jacobs, A. M., and Schrott, R. (2015). Gefesselt im Kopfkino: Von Kippschaltern, Madeleine
Effekten und Don Quichote Syndromen bei der Immersion in
Textwelten (Captivated in the mind’s cinema: Of trigger-switches,
Don Quichote syndroms and immersion in text worlds). Available online at: FIKTION.CC
Jacobs, A. M., Võ, M. L. H., Briesemeister, B. B., Conrad, M., Hofmann, M. J., Kuchinke, L., Lüdtke, J. & Braun, M. (2015). 10 years of BAWLing into affective and aesthetic processes in
reading: what are the echoes?. Frontiers in Psychology, 61:714.
Jacobs, A., Hofmann, M. J., & Kinder, A. (2016b). On elementary affective decisions: To like or not to like, that
is the question. Frontiers in Psychology, 71:1836.
Jacobsen, T. (2006). Bridging the arts and sciences: A framework for the psychology of
aesthetics. Leonardo, 391, 155–162.
Jakobson, R., & Jones, L. G. (1970). Shakespeare’s Verbal Art in Th’Expence of Spirit (No. 35). Walter de Gruyter.
Jakobson, R., & Lévi-Strauss, C. (1962). “Les chats” de Charles Baudelaire. L’homme, 21, 5–21.
Kintsch, W. (2000). Metaphor comprehension: A computational theory. Psychonomic Bulletin & Review, 7(2), 257–266.
Kintsch, W. (2012). Musings about beauty. Cognitive Science, 36(4), 635–654.
Kintsch, W., & Mangalath, P. (2011). The construction of meaning. Topics in Cognitive Science, 3(2), 346–370.
Kiss, G. R., Armstrong, C., Milroy, R. and Piper, J. (1973). An associative thesaurus of English and its computer
analysis. In Aitken, A. J., Bailey, R. W. and Hamiltonsmith, N. (Eds), The Computer and Literary Studies. Edinburgh: University Press.
Kivy, P. (1991). Music alone: Philosophical reflections on the purely musical
experience. Cornell University Press.
Koelsch, S., Jacobs, A. M., Menninghaus, W., Liebal, K., Klann-Delius, G., von Scheve, C., & Gebauer, G. (2015). The quartet theory of human emotions: An integrative and
neurofunctional model. Physics of Life Reviews, 131, 1–27.
Krumhansl, C. L. (1997). An Exploratory Study of Musical Emotions and
Psychophysiology. Canadian Journal of Experimental Psychology, 51(4), 336.
Kuchinke, L., Fritzemeier, S., Hofmann, M. J., & Jacobs, A. M. (2013). Neural correlates of episodic memory: Associative memory and
confidence drive hippocampus activations. Behavioural Brain Research, 2541, 92–101.
Kuhlmann, M., Hofmann, M. J., Briesemeister, B. B., & Jacobs, A. M. (2016). Mixing positive and negative valence: Affective-semantic
integration of bivalent words. Scientific Reports, 6:30718.
Kuzmičová, A. (2014). Literary narrative and mental imagery: A view from embodied
cognition. Style, 48(3), 275–293.
Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation of
knowledge. Psychological Review, 104(2), 211.
Lasswell, H. D., & Namenwirth, J. Z. (1969). The Lasswell value dictionary. New Haven: Yale University Press.
Leder, H., Belke, B., Oeberst, A., & Augustin, D. (2004). A model of aesthetic appreciation and aesthetic
judgments. British Journal of Psychology, 95(4), 489–508.
Leder, H., & Nadal, M. (2014). Ten years of a model of aesthetic appreciation and aesthetic
judgments: The aesthetic episode – developments and challenges in
empirical aesthetics. British Journal of Psychology, 105(4), 443–464.
Leder, H., Markey, P. S., & Pelowski, M. (2015). Aesthetic emotions to art-What they are and what makes them
special: Comment on “The quartet theory of human emotions: An integrative
and neurofunctional model” by S. Koelsch et al.Physics of Life Reviews, 131, 67–70.
Lehne, M., Engel, P., Rohrmeier, M., Menninghaus, W., Jacobs, A. M., & Koelsch, S. (2015). Reading a suspenseful literary text activates brain areas related
to social cognition and predictive inference. PLoS One, 10(5), e0124550.
Levinson, J. (1997). Music and negative emotion. In J. Robinson (Ed.), Music and Meaning (pp. 215–41). Ithaca, NY: Cornell University Press.
Lindquist, K. A., MacCormack, J. K., & Shablack, H. (2015). The role of language in emotion: Predictions from psychological
constructionism. Frontiers in Psychology, 6:444.
Liu, S., Erkkinen, M. G., Healey, M. L., Xu, Y., Swett, K. E., Chow, H. M., & Braun, A. R. (2015). Brain activity and connectivity during poetry composition: Toward
a multidimensional model of the creative process. Human Brain Mapping, 36(9), 3351–3372.
Loh, W. Y. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 1(1), 14–23.
Lüdtke, J., & Jacobs, A. M. (2015). The emotion potential of simple sentences: Additive or
interactive effects of nouns and adjectives?. Frontiers in Psychology, 6:1137.
Lüdtke, J., Meyer-Sickendieck, B., & Jacobs, A. M. (2014). Immersing in the stillness of an early morning: Testing the mood
empathy hypothesis of poetry reception. Psychology of Aesthetics, Creativity, and the Arts, 8(3), 363.
Marin, M. M. (2015). Crossing boundaries: Toward a general model of
neuroaesthetics. Frontiers in Human Neuroscience, 91:443.
Marin, M. M., Lampatz, A., Wandl, M., & Leder, H. (2016). Berlyne revisited: Evidence for the multifaceted nature of
hedonic tone in the appreciation of paintings and music. Frontiers in Human Neuroscience, 10:536.
Martindale, C. (1975). The romantic progression: The psychology of literary history. Halsted Press.
McNamara, D. S., Louwerse, M. M., McCarthy, P. M., & Graesser, A. C. (2010). Coh-Metrix: Capturing linguistic features of
cohesion. Discourse Processes, 47(4), 292–330.
McNamara, D. S., Graesser, A. C., McCarthy, P. M., & Cai, Z. (2014). Automated evaluation of text and discourse with Coh-Metrix. Cambridge University Press.
McQuarrie, E. F., & Mick, D. G. (1996). Figures of rhetoric in advertising language. Journal of Consumer Research, 22(4), 424–438.
Mcquire, M., Mccollum, L., & Chatterjee, A. (2017). Aptness and beauty in metaphor. Language and Cognition, 9(2), 316–331.
Meireles, R. C. (2005). The hermeneutics of symbolical imagery in Shakespeare’s
sonnets. Unpublished Dissertation, University. Porto Alegre, Bresil.
Menninghaus, W., Bohrn, I. C., Altmann, U., Lubrich, O., & Jacobs, A. M. (2014). Sounds funny? Humor effects of phonological and prosodic figures
of speech. Psychology of Aesthetics, Creativity, and the Arts, 8(1), 71–76.
Menninghaus, W., Bohrn, I. C., Knoop, C. A., Kotz, S. A., Schlotz, W., & Jacobs, A. M. (2015). Rhetorical features facilitate prosodic processing while
handicapping ease of semantic comprehension. Cognition, 1431, 48–60.
Meyer-Sickendiek, B. (2011). Lyrisches Gespür: Vom Geheimen Sensorium Moderner
Poesie [The lyrical sense of feeling. About the secret
sensorium of modern poetry]. Paderborn, Germany: Fink.
Miall, D. S. (1989). Beyond the schema given: Affective comprehension of literary
narratives. Cognition & Emotion, 3(1), 55–78.
Miall, D. S., & Kuiken, D. (1994). Foregrounding, defamiliarization, and affect: Response to
literary stories. Poetics, 22(5), 389–407.
Miall, D. S., & Dissanayake, E. (2003). The poetics of babytalk. Human Nature, 14(4), 337–364.
Miller, G. A. (1993). “Images and models, similes and metaphors”. In A. Ortony (ed), Metaphor and thought, 2nd edition (pp. 357–400). Cambridge: Cambridge University Press.
Miller, G. A. (1993). Wörter: Streifzüge durch die Psycholinguistik. Frankfurt: Zweitausendeins.
Millis, K., & Larson, M. (2008). Applying the construction-integration framework to aesthetic
responses to representational artworks. Discourse Processes, 45(3), 263–287.
Nicklas, P., & Jacobs, A. M. (2017). Rhetorics, neurocognitive poetics and the aesthetics of
adaptation. Poetics Today, 381, 393–412. .
Oatley, K. (1994). A taxonomy of the emotions of literary response and a theory of
identification in fictional narrative. Poetics, 23(1–2), 53–74.
Oatley, K. (2016). Fiction: Simulation of social worlds. Trends in Cognitive Sciences, 20(8), 618–628.
O’Sullivan, N., Davis, P., Billington, J., Gonzalez-Diaz, V., & Corcoran, R. (2015). “Shall I compare thee”: The neural basis of literary awareness,
and its benefits to cognition. Cortex, 731, 144–157.
Panksepp, J. (2008). The power of the word may reside in the power of
affect. Integrative Psychological and Behavioral Science, 42(1), 47–55.
Pelowski, M., Markey, P. S., Lauring, J. O., & Leder, H. (2016). Visualizing the impact of art: An update and comparison of
current psychological models of art experience. Frontiers in Human Neuroscience, 10:160.
Pléh, C. (2003). Narrativity in text construction and self
construction. Neohelicon, 30(1), 187–205.
Pragglejaz Group (2007). MIP: A method for identifying metaphorically used words in
discourse. Metaphor and Symbol, 22(1), 1–39.
Richards, I. A. (1929). Practical criticism: A study of literary judgment. New York: Harcourt Brace Jovanovich.
Rosenblatt, L. M. (1978). The reader, the text, the poem: The transactionaltheoryof the
literarywork. Carbondale, IL: Southern Illinois University Press.
Ryan, M. L. (2001). Narrative as virtual reality: Immersion and interactivity in literature
and electronic media. Johns Hopkins University Press.
Schmidtke, D. S., Schröder, T., Jacobs, A. M., & Conrad, M. (2014). ANGST: Affective norms for German sentiment terms, derived from
the affective norms for English words. Behavior Research Methods, 46(4), 1108–1118.
Schrott, R., & Jacobs, A. M. (2011). Gehirn und Gedicht: Wie wir unsere Wirklichkeiten
konstruieren (Brain and Poetry: How We Construct Our
Realities). München: Hanser.
Shimron, J. (1980). Psychological processes behind the comprehension of a poetic
text. Instructional Science, 9(1), 43–66.
Simonto, D. K. (1989). Shakespeare’s Sonnets: A Case of and for Single – Case
Historiometry. Journal of Personality, 57(3), 695–721.
Simonton, D. K. (1990). Lexical choices and aesthetic success: A computer content
analysis of 154 Shakespeare sonnets. Computers and the Humanities, 24(4), 251–264.
Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is
logarithmic. Cognition, 128(3), 302–319.
Steen, G. (1999). Analyzing metaphor in literature: With examples from William
Wordsworth’s “I wandered lonely as a cloud”. Poetics Today, 20(3), 499–522.
Steen, G. (2004). Can discourse properties of metaphor affect metaphor
recognition?. Journal of Pragmatics, 36(7), 1295–1313.
Stockwell, P. (2009). The cognitive poetics of literary resonance. Language and Cognition, 1(1), 25–44.
Stone, P. J., Bales, R. F., Namenwirth, J. Z., & Ogilvie, D. M. (1962). The general inquirer: A computer system for content analysis and
retrieval based on the sentence as a unit of information. Behavioral Science, 7(4), 484–498.
Sylvester, T., Braun, M., Schmidtke, D., & Jacobs, A. M. (2016). The Berlin affective word list for children (kidBAWL): Exploring
processing of affective lexical semantics in the visual and auditory
modalities. Frontiers in Psychology, 7:969.
Taruffi, L. (2016). Why We Listen to Sad Music: Effects on Emotion and
Cognition. (Unpublished doctoral dissertation), Freie Universität Berlin.
The Complete Works of William Shakespeare. n.d. Retrieved from: [URL].
Tsur, R. (1998). Poetic Rhythm: Structure and Performance – An Empirical Study in
Cognitive Poetics. Bern: Peter Lang.
Tsur, R. (2006). Delivery style and listener response in the rhythmical
performance of Shakespeare’s sonnets. College Literature, 33(1), 170–196.
Turner, F., & Pöppel, E. (1983). The neural lyre: Poetic meter, the brain, and time. Poetry, 277–309.
Ullrich, S., Aryani, A., Kraxenberger, M., Jacobs, A. M., & Conrad, M. (2016). Textual features as basis of the general affective meaning:
Exploring the interplay of lexical affective features, dynamic inter-lexical
shifts, and the basic affective tone in poetry. In revision.
Van Peer, W. (1986). Stylistics and psychology: Investigations of foregrounding. London, UK: Croom Helm.
van den Hoven, E., Hartung, F., Burke, M., & Willems, R. (2016). Individual differences in sensitivity to style during literary
reading: Insights from eye-tracking. Collabra: Psychology, 2(1), 1–16.
Vaughan-Evans, A., Trefor, R., Jones, L., Lynch, P., Jones, M. W., & Thierry, G. (2016). Implicit detection of poetic harmony by the naïve
brain. Frontiers in Psychology, 7:1859.
Vendler, H. (1997). The art of Shakespeare’s sonnets. Cambridge, MA: Harvard University Press.
Võ, M. L., Conrad, M., Kuchinke, L., Urton, K., Hofmann, M. J., & Jacobs, A. M. (2009). The Berlin affective word list reloaded (BAWL-R). Behavior Research Methods, 41(2), 534–538.
Võ, M. L., Jacobs, A. M., & Conrad, M. (2006). Cross-validating the Berlin affective word list. Behavior Research Methods, 38(4), 606–609.
Wainwright, J. (2015). Poetry: The basics. Routledge.
Wallace, W. T., & Rubin, D. C. (1991). Characteristics and constraints in ballads and their effect on
memory. Discourse Processes, 141, 181–202.
Wallentin, M., Nielsen, A. H., Vuust, P., Dohn, A., Roepstorff, A., & Lund, T. E. (2011). Amygdala and heart rate variability responses from listening to
emotionally intense parts of a story. Neuroimage, 58(3), 963–973.
Warriner, A. B., Kuperman, V., & Brysbaert, M. (2013). Norms of valence, arousal, and dominance for 13,915 English
lemmas. Behavior Research Methods, 45(4), 1191–1207.
Westbury, C., Keith, J., Briesemeister, B. B., Hofmann, M. J., & Jacobs, A. M. (2014). Avoid violence, rioting, and outrage; approach celebration,
delight, and strength: Using large text corpora to compute valence, arousal,
and the basic emotions. The Quarterly Journal of Experimental Psychology, 68(8), 1599–1622.
Willems, R. M. (Ed.). (2015). Cognitive Neuroscience of Natural Language Use. Cambridge: Cambridge University Press.
Willems, R. M., Frank, S. L., Nijhof, A. D., Hagoort, P., & Van den Bosch, A. (2015). Prediction during natural language comprehension. Cerebral Cortex, 26(6), 2506–2516.
Willems, R. M., & Jacobs, A. M. (2016). Caring about Dostoyevsky: The untapped potential of studying
literature. Trends in Cognitive Sciences, 20(4), 243–245.
Yaron, I. (2002). Processing of obscure poetic texts: Mechanisms of
selection. Journal of Literary Semantics, 31(2), 133–170.
Yaron, I. (2008). What is a “difficult poem”? Towards a definition. Journal of Literary Semantics, 37(2), 129–150.
Zeman, A., Milton, F., Smith, A., & Rylance, R. (2013). By heart an fMRI study of brain activation by poetry and
prose. Journal of Consciousness Studies, 20(9–10), 132–158.
2024. On the Complexity of Literary and Popular Fiction. Empirical Studies of the Arts 42:1 ► pp. 281 ff.
Al Mamun, Md Habib, Pantea Keikhosrokiani, Moussa Pourya Asl, Nur Ain Nasuha Anuar, Nurfarah Hadira Abdul Hadi & Thasnim Humida
2022. Sentiment Analysis of the Harry Potter Series Using a Lexicon-Based Approach. In Handbook of Research on Opinion Mining and Text Analytics on Literary Works and Social Media [Advances in Web Technologies and Engineering, ], ► pp. 263 ff.
Barbado, Alberto, Víctor Fresno, Ángeles Manjarrés Riesco & Salvador Ros
2022. DISCO PAL: Diachronic Spanish sonnet corpus with psychological and affective labels. Language Resources and Evaluation 56:2 ► pp. 501 ff.
Papp-Zipernovszky, Orsolya, Anne Mangen, Arthur Jacobs & Jana Lüdtke
2022. Shakespeare sonnet reading: An empirical study of emotional responses. Language and Literature: International Journal of Stylistics 31:3 ► pp. 296 ff.
Usée, Franziska, Arthur M. Jacobs & Jana Lüdtke
2020. From Abstract Symbols to Emotional (In-)Sights: An Eye Tracking Study on the Effects of Emotional Vignettes and Pictures. Frontiers in Psychology 11
Xue, Shuwei, Arthur M. Jacobs & Jana Lüdtke
2020. What Is the Difference? Rereading Shakespeare’s Sonnets —An Eye Tracking Study. Frontiers in Psychology 11
Crossley, Scott A., Kristopher Kyle & Mihai Dascalu
2019. The Tool for the Automatic Analysis of Cohesion 2.0: Integrating semantic similarity and text overlap. Behavior Research Methods 51:1 ► pp. 14 ff.
Bruhn, Mark J.
2018. Citation analysis. Scientific Study of Literature 8:1 ► pp. 77 ff.
Jacobs, Arthur M. & Annette Kinder
2018. What makes a metaphor literary? Answers from two computational studies. Metaphor and Symbol 33:2 ► pp. 85 ff.
2019. Sentiment Analysis for Words and Fiction Characters From the Perspective of Computational (Neuro-)Poetics. Frontiers in Robotics and AI 6
This list is based on CrossRef data as of 5 november 2024. Please note that it may not be complete. Sources presented here have been supplied by the respective publishers.
Any errors therein should be reported to them.